• 제목/요약/키워드: Recombinant Protein Production

검색결과 493건 처리시간 0.027초

Enhancement of Excretory Production of an Exoglucanase from Escherichia coli with Phage Shock Protein A (PspA) Overexpression

  • Wang, Y.Y.;Fu, Z.B.;Ng, K.L.;Lam, C.C.;Chan, A.K.N.;Sze, K.F.;Wong, W.K.R.
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권6호
    • /
    • pp.637-645
    • /
    • 2011
  • Production of recombinant proteins by excretory expression has many advantages over intracellular expression in Escherichia coli. Hyperexpression of a secretory exoglucanase, Exg, of Cellulomonas fimi was previously shown to saturate the SecYEG pathway and result in dramatic cell death of E. coli. In this study, we demonstrated that overexpression of the PspA in the JM101(pM1VegGcexL-pspA) strain enhanced excretion of Exg to 1.65 U/ml using shake-flask cultivation, which was 80% higher than the highest yield previously obtained from the optimized JM101(pM1VegGcexL) strain. A much higher excreted Exg activity of 4.5 U/ml was further achieved with high cell density cultivation using rich media. Furthermore, we showed that the PspA overexpression strain enjoyed an elevated critical value (CV), which was defined as the largest quotient between the intracellular unprocessed precursor and its secreted mature counterpart that was still tolerable by the host cells prior to the onset of cell death, improving from the previously determined CV of 20/80 to the currently achieved CV of 45/55 for Exg. The results suggested that the PspA overexpression strain might tolerate a higher level of precursor Exg making use of the SecYEG pathway for secretion. The reduced lethal effect might be attributable to the overexpressed PspA, which was postulated to be able to reduce membrane depolarization and damage. Our findings introduce a novel strategy of the combined application of metabolic engineering and construct optimization to the attainment of the best possible E. coli producers for secretory/excretory production of recombinant proteins, using Exg as the model protein.

Effect of IRES Controlled Reporter Gene on Screening and Production of Recombinant Human EPO Proteins from Cultured CHO Cells

  • Lee Hyun Gi;Park Jin-Ki;Kim Sung-Woo;Ko Eun-Mi;Kim Byoung-Ju;Jo Su-Jin;Byun Sung-June;Yang Boh-Suk;Chang Won-Kyong;Lee Hoon-Taek;Lee Poong-Yeon
    • Reproductive and Developmental Biology
    • /
    • 제30권2호
    • /
    • pp.81-85
    • /
    • 2006
  • This study was conducted to examine the effect of IRES controlled reporter gene on screening and production of recombinant human erythropoietin (EPO) proteins from cultured CHO cells. The cDNA was cloned for EPO from human liver cDNA Using site-directed mutagenesis, we generated recombinant human EPO (rhEPO) with two additional N-glycosylations (Novel erythropoiesis-stimulating protein: NESP). Wild type hEPO and NESP were cloned into expression vectors with GFP reporter gene under regulatory control of CMV promoter and IRES so that the vectors could express both rhEPO and GFP. The expression vectors were transfected to cultured CHO-K1 cells. Under microscopy, expression of GFP was visible. Using supernatant of the culture, ELISA assay, immunocytochemistry and in vitro assay using EPO dependant cell line were performed to estimate biological activity to compare the production characteristics (secretion levels, etc.) between rhEPO and NESP. The activity of NESP protein, obtained by mutagenesis, was described and compared with its rhEPO counterpart produced under same conditions. Although NESP had less secretion level in CHO cell line, the biological activity of NESP was greater than that of rhEPO. These results are consistent with previous researches. We also demonstrated that rhEPO and GFP proteins expressed simultaneously from transfected CHO cell line. Therefore we conclude that use of GFP reporter gene under IRES control could be used to screen and produce rhEPO in cultured CHO cells.

Immunogenicity of Recombinant Human Erythropoietin: Clinical Cases, Causes and Assays

  • Heo, Tae-Hwe;Kim, Young-Kwon;Yang, Seung-Ju;Cho, Hyun-Jeong;Kim, Sung-Jo
    • 대한의생명과학회지
    • /
    • 제15권2호
    • /
    • pp.161-166
    • /
    • 2009
  • Human erythropoietin(EPO) is a glycoprotein that enhances red blood cell production by stimulating proliferation and differentiation of erythroid progenitor cells in the bone marrow. Patients with chronic kidney disease(CKD) suffer from anemia caused by reduced production of EPO in the kidney. Recombinant human EPO protein has been used successfully for the treatment of anemia associated with CKD. Recently, attention has been paid to the development of side effect of EPO, pure red cell aplasia(PRCA), in some patients with CKD. PRCA is a rare disorder of erythropoiesis that leads to a severe anemia due to an almost complete cessation of red blood cell production. EPO-related PRCA is caused by the production of EPO-neutralizing antibodies(Abs) that eliminate the biological activity of EPO as well as endogenous EPO in patients undergoing therapy. Since 1988, almost 200 cases worldwide have been reported with Ab-positive PRCA after receiving EPO therapeutics. The underlying mechanisms of the breaking of immune tolerance to self-EPO have been investigated. Modification of formulation, organic compounds of container closures, and route of administration has been suggested for the possible mechanism of increased immunogenicity of EPO. A number of assays have been used to detect Abs specific to EPO. These assays are generally grouped into two major categories: binding Ab assays and neutralizing Ab assays(bioassays). There are several types of binding Ab assays, including radioimmunoprecipitation assay, enzyme-linked immunosorbent assay, and the BIAcore biosensor assay. In vitro cell-based bioassays have been utilized for the detection of neutralizing Abs. Finally, the recent experience with anti-EPO Abs may have considerable implications for the future development and approval of EPO preparations. Also, considering that millions of patients are being treated with EPO, clinicians need to be aware of signs and consequences of this rare but severe clinical case.

  • PDF

Stress-Governed Expression and Purification of Human Type II Hexokinase in Escherichia coli

  • Jeong, Eun-Ju;Park, Kyoung-Sook;Yi, So-Yeon;Kang, Hyo-Jin;Chung, Sang-J.;Lee, Chang-Soo;Chung, Jin-Woong;Seol, Dai-Wu;Chung, Bong-Hyun;Kim, Moon-Il
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.638-643
    • /
    • 2007
  • The full encoding sequence for human type II hexokinase (HXK II) was cloned into the E. coli expression vector pET 21b and expressed as a C-terminally hexahistidine-tagged protein in the BL2l (DE3) strain. The IPTG-induced HXK II approximately accounted for 17% of the total E. coli proteins, and 81% of HXK $II_{6{\times}His}$ existed in inclusion bodies. To improve the production of soluble recombinant HXK II protein, in the functionally active form, we used low temperature, and the osmotic stress expression method. When expressed at $18^{\circ}C$, about 83% of HXK $II_{6{\times}His}$ existed in the soluble fraction, which amounted to a 4.1-fold yield over that expressed at $37^{\circ}C$. The soluble form of HXK $II_{6{\times}His}$ was also highly produced in the presence of 1M sorbitol under the standard condition $(37^{\circ}C)$, which indicated that temperature downshift and low water potentials were required to improve the yield of active recombinant HXK II protein. The expressed protein was purified by metal chelate affinity chromatography performed in an IDA Excellose column charged with $Ni^{2+}$ ions, resulting in about 40mg recombinant HXK II protein obtained with purity over 89% from 51 of E. coli culture. The identity of HXK $II_{6{\times}His}$ was confirmed by Western blotting analysis. Taken together, using the stress-governed expression described in this study, human active HXK II can be purified in sufficient amounts for biochemical and biomedical studies.

A Novel Oxidative Stress-inducible Peroxidase Promoter and Its Applications to Production of Pharmaceutical Proteins in Transgenic Cell Cultures

  • Lee, Ok-Sun;Park, Sun-Mi;Kwon, Suk-Yoon;Lee, Haeng-Soon;Kim, Kee-Yeun;Kim, Jae-Whune;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • 제4권4호
    • /
    • pp.143-150
    • /
    • 2002
  • A strong oxidative stress-inducible peroxidase promoter (referred to as SWPA2 promoter) was cloned from tell cultures of sweetpotato (Ipomoea batatas) and characterized in transgenic tobacco cultured cells in terms of biotechnological applications. Employing a transient expression assay in tobacco protoplasts, with five different 5'-deletion mutants of the SWPA2 promoter fused to the $\beta$-glucuronidase (GUS) reporter gene, the 1314 bp deletion mutant showed approximately 30 times higher GUS expression than the CaMV 35S promoter. The expression of GUS activity in suspension cultures of transgenic cells derived from transgenic tobacco leaves containing the -1314 bp SWPA2 promoter-GUS fusion was strongly expressed following 15 days of subculture compared to other deletion mutants, suggesting that the 1314 bp SWPA2 promoter will be biotechnologically useful for the development of transgenic cell lines engineered to produce key pharmaceutical proteins. In this respect, we developed transgenic cell lines such as tobacco (Nicotiana tabacum L. BY-2), ginseng (Panax ginseng) and Siberian ginseng (Acanthopanax senticosus) using a SWPA2 promoter to produce a human lactoferrin (hLf) and characterized the hLf production in cultured cells. The hLf production monitored by ELISA analysis in transgenic BY-2 cells was directly increased proportional to cell growth and reached a maximal level (up to 4.3% of total soluble protein) at the stationary phase in suspension cultures. The SWPA2 promoter should result in higher productivity and increased applications of plant cultured cells for the production of high-value recombinant proteins.

용균과 DNA 패키징 유전자가 결핍된 온도 민감성 박테리오 파아지 람다 시스템에서 재조합 단백질 생산성에 미치는 온도의 영향 (Temperature Effect on the Productivity of Recombinant Protein in a Lysis and DNA packaging-deficient and Temperature-sensitive Bacteriophage $\lambda$System)

  • 오정석;박태현
    • KSBB Journal
    • /
    • 제20권2호
    • /
    • pp.112-115
    • /
    • 2005
  • 본 연구는 장시간의 산업적인 연속 배양에서 문제가 되는 플라즈미드 불안정성을 극복하기 위해서 박테리오 파아지람다를 벡터로 이용하였다. 또한, 벡터의 안정성과 생산성을 높이기 위해서 용균과 ${\lambda}DNA$패키징이 결핍된 돌연변이 람다를 선별하였다. 이 돌연변이 람다는 온도 전환에 의해서 단백질이 생산되는 온도 민감성 돌연변이 cI유전자를 가지고 있기 때문에 재조합 단백질 생산, ${\lambda}DNA$ 복제,숙주 세포의 안정성 등이 lytic상태로의 전환을 유도하는 온도에 영향을 받게 된다. $36^{\circ}C$의 배양 온도는 lytic으로 전환이 잘 되지 않았고, $40^{\circ}C$ 이상의 배양 온도는 완전한 lytic상태를 유도하였다. 그러나$42^{\circ}C$의 배양 온도에서는 생산성이 감소되는 온도 저해 효과가 관찰되었다. 온도가 증가할수록 박테리오 파아지가 들어 있지 않는 대장균의 수는 증가하였고,이것은 새로운 파아지를 만들 수 있는 박테리오 파이지를 사용하여 재감염을 시키면 완화될 수 있을 것으로 예상된다. 결과적으로 단위 세포당 발현량은 $40^{\circ}C$에서 최대를 나타내었고, 안정성이나 총 발현량의 관점에서는 $38^{\circ}C$가 최적의 온도로 관찰되었다.

Sodium butyrate에 의한 돼지 전염성 위장염 바이러스 백신의 생산성 향상 (Improvement of Virus Productivity by Sodium Butyrate in the Production of Porcine Transmissible Gastroenteritis Virus Vaccine)

  • 이창진;김철민;정연호
    • KSBB Journal
    • /
    • 제26권2호
    • /
    • pp.107-111
    • /
    • 2011
  • The essential operating parameters in virus vaccine production are multiplicity of infection (MOI), harvest time, and infection time. Stimulating agents also can be applied in order to improve vaccine productivity further. We investigated the optimum operating conditions in porcine transmissible gastroenteritis virus (TGEV) vaccine production and the applicability of sodium butyrate (NaBu) as a stimulating agents for the improvement of vaccine productivity. The optimum MOI, infection time, and harvest time for high production of TGEV by swine testicle (ST) cells were found to be 0.0001 pfu/cell, 3 day after cell inoculation, and 24 hpi, respectively. NaBu is known as a histone deacetylase inhibitor that has been widely used for the high expression of recombinant protein using mammalian cells and for the enhancement of virus propagation. So we tried to examine the potential of NaBu as a stimulating agent and to determine the optimum concentration by comparing TGEV titers with different range of NaBu concentration. TGEV titer with 5 mM NaBu was 1.5 times higher than control. Therefore, we concluded that NaBu can be a promising agent for stimulating various vaccine production including TGEV and the optimum NaBu concentration for TGEV production was determined to be 5 mM.

Variations in Protein Glycosylation in Hansenula polymorpha Depending on Cell Culture Stage

  • Kim, So-Young;Sohn, Jung-Hoon;Pyun, Yu-Ryang;Choi, Eui-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권12호
    • /
    • pp.1949-1954
    • /
    • 2007
  • A simple way to prevent protein hyperglycosylation in Hansenula polymorpha was found. When glucose oxidase from Aspergillus niger and carboxymethyl cellulase from Bacillus subtilis were expressed under the control of an inducible methanol oxidase (MOX) promoter using methanol as a carbon source, hyperglycosylated forms occurred. In contrast, MOX-repressing carbon sources (e.g., glucose, sorbitol, and glycerol) greatly reduced the extent of hyperglycosylation. Carbon source starvation of the cells also reduced the level of glycosylation, which was reversed to hyperglycosylation by the resumption of cell growth. It was concluded that the proteins expressed under actively growing conditions are produced as hyperglycosylated forms, whereas those under slow or nongrowing conditions are as short-glycosylated forms. The prevention of hyperglycosylation in the Hansenula polymorpha expression system constitutes an additional advantage over the traditional Saccharomyces cerevisiae system in recombinant production of glycosylated proteins.

유우로부터 재조합단백질 생산에 대한 전망 (Prospects for Recombinant Protein Production in Dairy Cattle)

  • Bremel, Robert D.
    • 한국가축번식학회지
    • /
    • 제20권4호
    • /
    • pp.365-370
    • /
    • 1997
  • 유우의 유전적 개량에 대한 역사적인 계획이 이형접합적 기능획득을 이루어낸 새로운 유전공학 방법과 연계되어 논의되고 있다. 낙농산업에 유동성을 주기 위해 그 개념은 이미 체계가 세워진 지방조성과 단백질 조성 사이의 유전적인 상관관계를 깨뜨리는데 중점을 두고 설명되고 있다. 부가가치 유전학의 개념이 도입되고, 가축 유선의 금전적 경쟁력이 포유동물 세포배양과 세균발효기술과 연관있는 것으로 여겨지고 있다.

  • PDF

Overproduction of Bacillus macerans Cyclodextrin Glucanotransferase in E. coli by Coexpression of GroEL/ES Chaperone

  • Kwon, Mi-Jung;So-Lim Park;Sung-Koo Kim;Soo-Wan Nam
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권6호
    • /
    • pp.1002-1005
    • /
    • 2002
  • The effects of GroEL/ES chaperone on the production of soluble form of B. macerans cyclodextrin glucanotransferase (CGTase) in recombinant E. coli were investigated. The cgt gene and groEL/ES genes are under the control of T7 promoter and Pzt-1 promoter, respectively. The optimal concentrations of inducers, IPTG and tetracycline, were found to be 1.0 mM and 10 ng/ml, respectively. When tetracycline and IPTG were added at the early exponential phase (2h) and exponential phase (3h) of growth, respectively, about 1.5-fold increase of soluble CGTase activity and 1.6-fold increase of soluble CGTase protein were obtained. An SDS-PAGE analysis revealed that about $37.2\%$ of total CGTase protein was in the soluble fraction when GroEL/ES chaperone was overexpressed.