• Title/Summary/Keyword: Recoil Mechanism System

Search Result 8, Processing Time 0.027 seconds

Control of a Soft Recoil System for Recoil Force Reduction (사격충격력 저감을 위한 연식주퇴계의 제어)

  • Shin, Chul-Bong;Bae, Jae-Sung;Hwang, Jai-Hyuk;Kang, Kuk-Jeong;Ahn, Sang-Tae;Han, Tae-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.764-774
    • /
    • 2008
  • A fire-out-of-battery(FOOB) mechanism, which is a new recoil technology, can reduce dramatically the level of a recoil force compared to the conventional recoil system. The FOOB mechanism pre-accelerates the recoil parts in direction opposite of conventional recoil before ignition. This momentum of the recoil parts due to pre-acceleration can reduce the firing impulse. In this paper, the dynamics of the recoil system with this FOOB mechanism is formulated and simulated numerically. The results of the simulation show that the FOOB system can reduce the recoil force and stroke compared to the conventional system under normal condition. When the fault modes happen, the FOOB system may not perform well and may be damaged seriously due to excessive recoil force and stroke. Hence, the control of the fault modes is necessary to achieve the normal operation of the FOOB system. The results that an additional MR damper enables the FOOB system to perform well under all firing condition.

A Study on Recoil Force Reduction Using a Low-recoil Direct Gun (저반동 전차포의 주퇴력 저감 연구)

  • Park, Jin-Saeng
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.125-130
    • /
    • 2016
  • A low-recoil direct gun is useful in reducing the fire impulse generated by using a traditional shell. To apply a control equation to an AMESim Model, we have formulated a control equation for a recoil mechanism from the free object diagram. By modeling this equation, we have been able to compare the recoil distance and recoil force of a low-recoil direct gun. Here, we can analyze the recoil characteristics between traditional direct guns and low-recoil direct guns with perforated muzzle brakes. It is possible to mount a low-recoil direct gun with a perforated muzzle brake on a lightweight tracked vehicle by reducing its fire impulse.

A Study on Control of a Soft Recoil System for Recoil Force Reduction (사격충격력 저감을 위한 연식주퇴계의 제어에 관한 연구)

  • Shin, Chul-Bong;Bae, Jae-Sung;Hwang, Jai-Hyuk;Kang, Kuk-Jeong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.560-564
    • /
    • 2007
  • In order to reduce the level of recoil force, new recoil technology must be employed. The present study discusses a soft-recoil mechanism that can reduce dramatically the recoil force. The dynamics of the soft-recoil system with hydraulic dampers are described and simulated. The results of the simulation show that FOOB system can reduce the recoil force and the recoil stroke compared to conventional systems. However, the FOOB system is not able to perform well when the fault modes happen. Hence, this study uses the MR damper to achieving FOOB under fault modes.

  • PDF

Application Study of Recoil Mechanism using Friction Springs (마찰스프링의 주퇴복좌장치 적용성 연구)

  • Cha, Ki-Up;Gimm, Hak-In;Cho, Chang-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.324-333
    • /
    • 2012
  • The conventional medium and large caliber gun, in general, utilize the hydro-pneumatic recoil mechanism to control the firing impulse and to return to the battery position. However, this kind of mechanism may cause the problems like the leakages and the property changes in oil and gas due to the temperature variations between low and high temperatures. Accordingly, the friction spring mechanism has recently been researched as an alternative system. The friction spring mechanism consists of a set of closed inner and outer rings with the concentric tapered contact surfaces assembled in the columnar form, and can only be used under the compression load. When the spring column is axially loaded, the tapered surfaces become overlapped, causing the outer rings to expand while the inner rings are being contracted in diameter allowing an axial displacement. Because of friction between tapered contact surfaces, much higher spring stiffness is obtained on the stroke at the increase in load than the stroke at the decrease. In this paper, the dynamic equations regarding the friction spring system and the design approach have been investigated. It is also tried for a dynamic model representing the recoil motion and the friction spring forces. And the model has been proved from firing test using a gun system with friction springs. All the results show that the recoil mechanism using friction springs can substitute for the classic hydro-pneumatic recoil system.

A Development of Recoil & Counter Recoil Motion Measurement System Using LVDT

  • Park, Ju-Ho;Hong, Sung-Soo;Joon Lyou
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.214-219
    • /
    • 2000
  • This paper presents a recoil and counter recoil motion measurement system using linear variable differential transformers (LVDT). The output of the LVDT is obtained from the differential voltage of the secondary transformers. Since a transducer core is attached to the motion body, the output is directly proportional to the movement length of the core. Displacement, velocity and acceleration are measured from the LVDT. With a comparison between the measurement result and the reference value obtained by the highly accurate Vernier calipers, it is proved that the measurement system with the LVDT is applicable to the test of the moving part of the mechanism with better accuracy.

  • PDF

주퇴운동에 대한 제퇴기의 효과에 관한 연구

  • 이영현;강국정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1088-1092
    • /
    • 1996
  • This paper represents how a muzzle brake affects the dynamic characteristics of the recoil system. A muzzle brake is a device attached to the muzzle for the express purpose of diverting the propellant gas stream from its original path, thereby creating a foreward thrust on the recoiling gun which is in opposition to its rearward motion. In order to obtain the full advantage of a muzzle brake, it is necessary that the recoil system of a gun be designed for the purpose.

  • PDF

Analysis of Isolation System for Impulsive Force Device with Recoil Mechanism (반동방식 충격기구의 완충시스템 해석)

  • Kim, HyoJun;Ryu, BongJo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.272-279
    • /
    • 2005
  • In this study the optimal isolation system for the prototype HIFD(high impulsive force device) is investigated. For this purpose, firstly, the dynamic behavior of a human body and a transmitted force under specific operation conditions are analyzed through a series of experimental works using the devised test setup. In order to design the optimal dynamic absorbing system, the parameter optimization process is performed using the simplified isolation system model based on the experimental results of linear impulse and transmitted force. Finally, under the parameters satisfying the constraints of the buffering displacement and the transmitted force, the performance of the designed isolation system for the prototype HIFD is evaluated by experiment.

Digital Control of Automatic Gun Systems Incorporating an Intermittently Rotating Chamber (간헐 회전식 약실을 적응한 자동포 시스템의 디지털 제어)

  • Lim, S.C.;Kim, K.K.;Shim, J.S.;Kil, S.J.;Kim, H.C.;Lee, G.H.;Cha, G.U.;Cho, C.K.;Hong, S.K.
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.126-133
    • /
    • 2007
  • Lately, there exist growing demands to increase the firepower of mid-calibre automatic guns despite spatial limitations of armament. In this context, ammunitions of simple cylindrical shape are considered so advantageous that associated automatic guns are under development incorporating an intermittently rotating chamber mechanism. In this paper, relevant subsystems for such guns are to be described, and a digital controller to automate the entire system as well. Via dynamic simulations it proves to function well being able to drive the chamber at any constant speed up to 200spm, which is merely limited by the recoil performance. It is remarkable that the system synchronization idea in use is applicable to any other multi-actuator systems that should operate on the basis of event rather than time.