• Title/Summary/Keyword: Recognition System of License Plates

Search Result 46, Processing Time 0.026 seconds

Precise Detection of Car License Plates by Locating Main Characters

  • Lee, Dae-Ho;Choi, Jin-Hyuk
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.376-382
    • /
    • 2010
  • We propose a novel method to precisely detect car license plates by locating main characters, which are printed with large font size. The regions of the main characters are directly detected without detecting the plate region boundaries, so that license regions can be detected more precisely than by other existing methods. To generate a binary image, multiple thresholds are applied, and segmented regions are selected from multiple binarized images by a criterion of size and compactness. We do not employ any character matching methods, so that many candidates for main character groups are detected; thus, we use a neural network to reject non-main character groups from the candidates. The relation of the character regions and the intensity statistics are used as the input to the neural network for classification. The detection performance has been investigated on real images captured under various illumination conditions for 1000 vehicles. 980 plates were correctly detected, and almost all non-detected plates were so stained that their characters could not be isolated for character recognition. In addition, the processing time is fast enough for a commercial automatic license plate recognition system. Therefore, the proposed method can be used for recognition systems with high performance and fast processing.

A Study on Recognition of New Car License Plates Using Morphological Characteristics and a Fuzzy ART Algorithm (형태학적 특징과 퍼지 ART 알고리즘을 이용한 신 차량 번호판 인식에 관한 연구)

  • Kim, Kwang-Baek;Woo, Young-Woon;Cho, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.273-278
    • /
    • 2008
  • Cars attaching new license plates are increasing after introducing the new format of car license plate in Korea. Therefore, a car new license plate recognition system is required for various fields using automatic recognition of car license plates, automatic parking management systems and arrest of criminal or missing vehicles. In this paper, we proposed an intelligent new car license plate recognition method for the various fields. The proposed method is as follows. First of all, an acquired color image from a surveillance camera is converted to a gray level image and binarized by block binarization method. Second, noises of the binarized image removed by morphological characteristics of cars and then license plate area is extracted. Third, individual characters are extracted from the extracted license plate area using Grassfire algorithm. lastly, the extracted characters are learned and recognized by a fuzzy ART algorithm for final car license plate recognition. In the experiment using 100 car images, we could see that the proposed method is efficient.

  • PDF

Region Extraction of License Plates in Noise Environment Using YUV Color Space Convert (YUV컬러 공간변환에 의한 잡음환경의 차량번호판 영역추출)

  • Kim Jae-Nam;Choi Tae-Il;Kim Byung-Ki
    • The KIPS Transactions:PartD
    • /
    • v.13D no.1 s.104
    • /
    • pp.125-132
    • /
    • 2006
  • The existing recognition system of license plates cannot get the satisfactory result in noise environments. The purpose of this paper is to propose an algorithm that can recognize the region of license plates accurately in a noise environment. The algorithm is formulated by reorganizing the U- and V-channels of YUV color space as YUV is insensitive to light and carries less data than RGB color information. The region of license plates has been extracted by the geometric characteristics, sizes, and places of labeling images. The proposed algorithm was found to improve the process of extracting the region of license plates in various noise environments.

Segmentation and Recognition of Korean Vehicle License Plate Characters Based on the Global Threshold Method and the Cross-Correlation Matching Algorithm

  • Sarker, Md. Mostafa Kamal;Song, Moon Kyou
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.661-680
    • /
    • 2016
  • The vehicle license plate recognition (VLPR) system analyzes and monitors the speed of vehicles, theft of vehicles, the violation of traffic rules, illegal parking, etc., on the motorway. The VLPR consists of three major parts: license plate detection (LPD), license plate character segmentation (LPCS), and license plate character recognition (LPCR). This paper presents an efficient method for the LPCS and LPCR of Korean vehicle license plates (LPs). LP tilt adjustment is a very important process in LPCS. Radon transformation is used to correct the tilt adjustment of LP. The global threshold segmentation method is used for segmented LP characters from two different types of Korean LPs, which are a single row LP (SRLP) and double row LP (DRLP). The cross-correlation matching method is used for LPCR. Our experimental results show that the proposed methods for LPCS and LPCR can be easily implemented, and they achieved 99.35% and 99.85% segmentation and recognition accuracy rates, respectively for Korean LPs.

Semi-Supervised Learning Based Anomaly Detection for License Plate OCR in Real Time Video

  • Kim, Bada;Heo, Junyoung
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.113-120
    • /
    • 2020
  • Recently, the license plate OCR system has been commercialized in a variety of fields and preferred utilizing low-cost embedded systems using only cameras. This system has a high recognition rate of about 98% or more for the environments such as parking lots where non-vehicle is restricted; however, the environments where non-vehicle objects are not restricted, the recognition rate is about 50% to 70%. This low performance is due to the changes in the environment by non-vehicle objects in real-time situations that occur anomaly data which is similar to the license plates. In this paper, we implement the appropriate anomaly detection based on semi-supervised learning for the license plate OCR system in the real-time environment where the appearance of non-vehicle objects is not restricted. In the experiment, we compare systems which anomaly detection is not implemented in the preceding research with the proposed system in this paper. As a result, the systems which anomaly detection is not implemented had a recognition rate of 77%; however, the systems with the semi-supervised learning based on anomaly detection had 88% of recognition rate. Using the techniques of anomaly detection based on the semi-supervised learning was effective in detecting anomaly data and it was helpful to improve the recognition rate of real-time situations.

The FE-MCBP for Recognition of the Tilted New-Type Vehicle License Plate (기울어진 신규차량번호판 인식을 위한 FE-MCBP)

  • Koo, Gun-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.73-81
    • /
    • 2007
  • This paper presents how to recognize the new-type vehicle license plate using multi-link recognizer after extract the features from characters. In order to assist this task, this paper proposed FE-MCBP to recognize each character that got through image preprocess, extract range of vehicle license plate and extract process of each character. FE-MCBP is the recognizer based on the features of the character, The recognizer is employed to identify the new-type vehicle licence plates which have both the hangul and the arabic numeral characters. And its recognition rate is improved 9.7 percent than the back propagation recognizer before. Also it makes use of extract of linear component and region coordinate generation technology to normalize a image of the tilted vehicle license plate. The recognition system of the new-type vehicle license plate make possible recognize a image of the tilted vehicle license plate when using this system. Also, this system can recognize the tilted or imperfect vehicle licence plates.

  • PDF

Recognition of Car License Plates using Morphological Information and SOM Algorithm

  • Lim, Eun-Kyung;Kim, Young-Ju;Kim, Dae-Su;Kwang-Baek, Kim
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.648-651
    • /
    • 2003
  • In this paper, we propose the recognition system of a license plate using SOM algorithm. The recognition of license plate was investigated by means of the SOM algorithm. The morphological information of horizontal and vertical edges was used to extract a plate region from a car image. In addition, the 4-direction contour tracking algorithm was applied to extract the specific area, which includes characters from an extracted plate area. Therefore, we proposed how to extract license plate region using morphological information and how to recognize the character string using SOM algorithm. In this paper, 50 car images were tested. The extraction rate obtained by the proposed extraction method showed better results than that from the color information of RGB and HSI, respectively. And the license plate recognition using SOM algorithm was very efficient.

  • PDF

A Robust Real-Time License Plate Recognition System Using Anchor-Free Method and Convolutional Neural Network

  • Kim, Dae-Hoon;Kim, Do-Hyeon;Lee, Dong-Hoon;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.4
    • /
    • pp.19-26
    • /
    • 2022
  • With the recent development of intelligent transportation systems, car license plate recognition systems are being used in various fields. Such systems need to guarantee real-time performance to recognize the license plate of a driving car. Also, they should keep a high recognition rate even in problematic situations such as small license plates in low-resolution and unclear image due to distortion. In this paper, we propose a real-time car license plate recognition system that improved processing speed using object detection algorithm based on anchor-free method and text recognition algorithm based on Convolutional Neural Network(CNN). In addition, we used Spatial Transformer Network to increase the recognition rate on the low resolution or distorted images. We confirm that the proposed system is faster than previously existing car license plate recognition systems and maintains a high recognition rate in a variety of environment and quality images because the proposed system's recognition rate is 93.769% and the processing speed per image is about 0.006 seconds.

Vehicle License Plate Recognition System using DCT and LVQ (DCT와 LVQ를 이용한 차량번호판 인식 시스템)

  • 한수환
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.1
    • /
    • pp.15-25
    • /
    • 2002
  • This paper proposes a vehicle license plate recognition system, which has relatively a simple structure and is highly tolerant of noise, by using the DCT(Discrete Cosine Transform) coefficients extracted from the character region of a license plate and the LVQ(Learning Vector Quantization) neural network. The image of a license plate is taken from a captured vehicle image based on RGB color information, and the character region is derived by the histogram of the license plate and the relative position of individual characters in the plate. The feature vector obtained by the DCT of extracted character region is utilized as an input to the LVQ neural classifier fur the recognition process. In the experiment, 109 vehicle images captured under various types of circumstances were tested with the proposed method, and the relatively high extraction rate of license plates and recognition rate were achieved.

  • PDF

A study on the improvement of artificial intelligence-based Parking control system to prevent vehicle access with fake license plates (위조번호판 부착 차량 출입 방지를 위한 인공지능 기반의 주차관제시스템 개선 방안)

  • Jang, Sungmin;Iee, Jeongwoo;Park, Jonghyuk
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.57-74
    • /
    • 2022
  • Recently, artificial intelligence parking control systems have increased the recognition rate of vehicle license plates using deep learning, but there is a problem that they cannot determine vehicles with fake license plates. Despite these security problems, several institutions have been using the existing system so far. For example, in an experiment using a counterfeit license plate, there are cases of successful entry into major government agencies. This paper proposes an improved system over the existing artificial intelligence parking control system to prevent vehicles with such fake license plates from entering. The proposed method is to use the degree of matching of the front feature points of the vehicle as a passing criterion using the ORB algorithm that extracts information on feature points characterized by an image, just as the existing system uses the matching of vehicle license plates as a passing criterion. In addition, a procedure for checking whether a vehicle exists inside was included in the proposed system to prevent the entry of the same type of vehicle with a fake license plate. As a result of the experiment, it showed the improved performance in identifying vehicles with fake license plates compared to the existing system. These results confirmed that the methods proposed in this paper could be applied to the existing parking control system while taking the flow of the original artificial intelligence parking control system to prevent vehicles with fake license plates from entering.