In this paper, we propose a smart system that can optically recognize a music score within a document and can play the music after recognition. Many historic handwritten documents have now been digitalized. Converting images of a music score within documents into digital files is particularly difficult and requires considerable resources because a music score consists of a 2D structure with both staff lines and symbols. The proposed system takes an input image using a mobile device equipped with a camera module, and the image is optimized via preprocessing. Binarization, music sheet correction, staff line recognition, vertical line detection, note recognition, and symbol recognition processing are then applied, and a music file is generated in an XML format. The Music XML file is recorded as digital information, and based on that file, we can modify the result, logically correct errors, and finally generate a MIDI file. Our system reduces misrecognition, and a wider range of music score can be recognized because we have implemented distortion correction and vertical line detection. We show that the proposed method is practical, and that is has potential for wide application through an experiment with a variety of music scores.
This paper proposes a noble voice recognition method based on an adaptive MFCC and deep learning for embedded systems. To enhance the recognition ratio of the proposed voice recognizer, ambient noise mixed into the voice signal has to be eliminated. However, noise filtering processes, which may damage voice data, diminishes the recognition ratio. In this paper, a filter has been designed for the frequency range within a voice signal, and imposed weights are used to reduce data deterioration. In addition, a deep learning algorithm, which does not require a database in the recognition algorithm, has been adapted for embedded systems, which inherently require small amounts of memory. The experimental results suggest that the proposed deep learning algorithm and HMM voice recognizer, utilizing the proposed adaptive MFCC algorithm, perform better than conventional MFCC algorithms in its recognition ratio within a noisy environment.
Purpose: This study was a descriptive study to identify the factors affecting the dementia prevention behavior of elders in rural communities. Methods: The participants in this study were 125 elders aged 60 or older who lived in Eup or Myeon areas of P city. For data analysis, SPSS/WIN 22.0 was used to perform descriptive statistics, t-test, ANOVA, Pearson correlation, and linear multiple regression and mediated effects. Results: Scores for dementia recognition, dementia attitude and dementia prevention behavior averaged 5.6±2.50 points in the 0~11 range, 38.8±4.59 in 14~56 and 20.2±3.59 in 10~30 respectively. Dementia recognition (a), dementia attitude (b), dementia prevention behavior (c) and the number of chronic diseases of the elders (d) were positively or negatively correlated with each other (rab=.29, p<.01; rbc=.26, p<.01; rac=.36, p<.01; rad=-.29, p<.01; rcd=.19, p<.05). Factors affecting dementia prevention behavior were dementia recognition, dementia attitude, and degree of dementia interest. When the number of chronic diseases affects dementia prevention behavior, dementia recognition has a mediating effect. Conclusion: In order to prevent dementia among elders in rural areas, appropriate management of chronic diseases and provision of appropriate dementia-related education and information to enhance dementia recognition should be provided.
훈련과 인식의 환경적 차이가 음성 인식 성능 저하의 주요 요인이며, 이러한 환경적 불일치를 줄이기 위한 다양한 잡음 처리 방법들이 연구되고 있다. 이 가운데 로그 에너지 특징에 대한 ERN(log-Energy dynamic Range Normalization), SEN(Silence Energy Normalization) 등이 우수한 성능을 보이고 있다. 그러나 이들 방법은 상대적으로 큰 갈을 갖는 로그 에너지 특징에 대해서는 처리가 불가능한 문제점이 이으며, 특히 SNR값이 작은 환경에서는 이러한 문제로 인하여 환경적 불일치가 더욱 크게 나타나고 있다. 이를 해결하기 위해서 본 논문은 자동 회귀 방식으로 이동 평균을 계산하여 로그 에너지 특징을 스무딩(smoothing)하는 ARMA(Auto-Regression and Moving Average) 필터를 후처리로 적용하는 방법을 제안한다. Aurora 2.0 DB를 이용한 인식 실험 결과, 제안 방법이 기존의 방법들에 비해 향상된 인식 결과를 얻을 수 있었다.
본 논문에서는 DTV(Digital Television) 기반의 수동형 레이다와 다중 채널 융합 기법을 이용한 항공기 표적 인식 방법을 제안하였다. DTV에서 송신되는 다수의 채널을 융합하여 표적인식에 필요한 해상도의 HRRP(High Resolution Range Profile)를 획득하였다. HRRP는 AR(Auto Regressive) 기법 또는 제로 패딩 기법을 이용하여 획득하였다. 획득한 HRRP로부터, 경사하강법을 이용한 CLEAN 기법을 통해 산란점을 추출한 후 특성벡터를 생성하였으며, 이를 신경망 구분기에 학습시켜 표적 인식을 수행하였다. 제안된 방법의 성능을 검증하기 위하여 실제 국내에서 운용되고 있는 3개의 송신소(관악산, 용문산, 견월악)의 주파수 대역을 가정하고, 4종의 항공기 실스케일 3D 캐드 모델을 이용하여 제안된 방법과 각 송신소의 단일 채널 주파수를 이용하였을 때의 표적인식 성능을 비교하였다. 시뮬레이션 결과, 제안된 방법이 3개의 송신소 모두에서 각 송신소의 단일 채널 주파수를 이용하였을 때보다 높은 표적 인식 성능을 보였다.
국내 컨테이너터미널에서는 야드 트랙터의 위치를 실시간으로 인식하기 위해 RFID시스템을 사용하고 있다. 그러나 RFID를 이용한 위치인식은 트랜스퍼 크레인을 이용하는 야드 작업에는 문제가 없으나, 컨테이너 크레인을 이용하는 본선 작업에는 문제가 있다. 즉, 컨테이너 크레인에서 크레인 밑의 4개 차선에서 움직이는 야드 트랙터들을 구분하여 정확히 인식하기가 불가능하기 때문이다. 따라서 본 논문에서는 트랜스퍼 크레인의 야드 작업은 물론이고 컨테이너 크레인의 본선 작업에서도 동일한 방식으로 정확히 야드 트랙터를 인식할 수 있는 적외선 통신시스템을 개발하였다. 본 연구의 결과 인식 횟수가 일정하게 측정되었으며, 25m의 거리에서도 인식범위가 5.7m로 측정 가능하였다. 즉, 컨테이너 크레인 밑을 이동하는 여러 대의 야드 트랙터들을 구분하여 인식할 수 있는 인식 범위를 가지게 되었다.
재해로 인한 부상 및 만성 질환 등의 다양한 요인으로 신체적 장애를 가진 환자, 혹은 신체의 노화로 인하여 몸의 움직임의 범위가 제한된 노인과 같은 경우, 치료의 일종으로 병원에서의 재활 프로그램의 참여를 권장 받는 경우가 있다. 그러나 이들은 신체의 거동이 불편하므로 보호자의 동행 없이 재활 프로그램의 참여를 위한 이동이 쉽지 않다. 또한, 병원에서는 각각의 환자 및 노인들에게 재활 운동을 지도해주어야 하는 불편함이 존재한다. 이러한 이유로, 이 논문에서는 모션 인식을 통하여 집에서도 타인의 도움 없이 재활 운동이 가능한 원격 재활 프로그램을 개발하였다. 해당 시스템은 사용자 집의 스테레오 카메라와 컴퓨터를 이용하여 구동할 수 있으며, 모션 인식 기능을 통하여 사용자의 실시간 운동 상태 확인이 가능하다. 사용자가 재활 운동에 참여하는 동안, 시스템은 사용자의 특정 부위의 관절가동범위(Joint ROM; Joint Range of Motion)를 저장하여 신체 기능의 향상도를 확인한다. 이 논문에서는 시스템의 검증을 위하여 총 4명의 실험군이 참여하였으며, 총 3종류의 운동을 각 9회씩 반복한 데이터를 이용하여 각 실험군의 시작 및 마지막 운동의 관절가동범위의 차이를 비교하였다.
IEIE Transactions on Smart Processing and Computing
/
제1권3호
/
pp.143-151
/
2012
A new data-driven method for the design of a blind modulation frequency filter that suppresses the slow-varying noise components is proposed. The proposed method is based on the temporal local decorrelation of the feature vector sequence, and is done on an utterance-by-utterance basis. Although the conventional modulation frequency filtering approaches the same form regardless of the task and environment conditions, the proposed method can provide an adaptive modulation frequency filter that outperforms conventional methods for each utterance. In addition, the method ultimately performs channel normalization in a feature domain with applications to log-spectral parameters. The performance was evaluated by speaker-independent isolated-word recognition experiments under additive noise environments. The proposed method achieved outstanding improvement for speech recognition in environments with significant noise and was also effective in a range of feature representations.
One fo the major problems in speech recognition is the mismatch between training and testing environments. Recently, SNR normalization technique, which normalizes the dynamic range of frequency channels in mel-scaled filterbank, was proposed[1]. While it showed improved robustness against additive noise, it requires a reliable speech detection mechanism and several adaptation parameters to be optimized. In this paper, we propose a modified SNR normalization technique. In this technique, we take simply the maximum of filterbank output and predetermined masking constant for each frequency band. According to the speaker-independent isolated word recognition in car noise environments, proposed modification yields better recognition performance that the original SNR normalization method, with rather reduced complexity.
The purpose of this study was to analyze consumer recognition, perceived importance, and satisfaction to create a new apple processed product and to promote its consumption. Data were collected from 527 men and women living throughout Korea through a self-administrated questionnaire. Frequencies, one-way analysis of variance, and Duncan's multiple range were conducted using SPSS v. 17.0 software. Recognition of juice and drinks, milk and dairy products, apple jam, and seasoning was high, while that of the other products was low. Consumer perceived importance of products was higher than consumer satisfaction of products. Quality preservation attributes were sanitation, taste, flavor, place of origin, and convenience of purchase. Attributes for improved consumer post-purchase satisfaction after purchasing were content of apple, quality of apple, price, and certificate of quality. The attributes of content of apple and certificate of quality were statistically different by consumer age.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.