• 제목/요약/키워드: Recognition Model

검색결과 3,457건 처리시간 0.036초

바타챠랴 거리 측정 기법을 사용한 가우시안 모델 기반 음소 인식 향상 (Improving Phoneme Recognition based on Gaussian Model using Bhattacharyya Distance Measurement Method)

  • 오상엽
    • 한국멀티미디어학회논문지
    • /
    • 제14권1호
    • /
    • pp.85-93
    • /
    • 2011
  • 기존의 어휘 인식에서는 일반적인 벡터 값을 데이터베이스를 이용하여 구하므로 탐색 중에 형성되는 음소를 처리하지 못하는 문제점을 제공하며, 음소 데이터에 대한 모델을 구성할 수 없는 단점으로 인하여 가우시안 모텔의 정확성을 확보하지 못하게 된다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 바타챠랴 거리 측정법을 이용하여 정확한 음소로 인식할 수 있도록 유도하였으며 유사 음소 인식과 오인식 오류를 최소화하여 인식률을 향상시켰다. 연속 확률 분포의 공유로부터 가우시안 모델 최적화를 실험한 결과 향상된 신뢰도로 인해 높은 인식 성능을 확인하였으며, 본 논문에서 제안한 바타챠랴 거리 측정법을 이용하여 실험한 결과 기존의 방법들에 비하여 평균 1.9%의 성능 향상을 나타내었으며 신뢰성을 바탕으로 인식율에서 평균 2.9%의 성능 향상을 나타내었다.

GMM 지원을 위해 k-means 알고리즘을 이용한 어휘 인식 성능 개선 (Vocabulary Recognition Performance Improvement using k-means Algorithm for GMM Support)

  • 이종섭
    • 디지털융복합연구
    • /
    • 제13권2호
    • /
    • pp.135-140
    • /
    • 2015
  • 일반적인 CHMM 어휘 인식 시스템은 어휘 인식에 대한 모델들의 관측 확률 인식률이 낮고, 일부 단위 음소 모델에만 적용되어 제한적으로 사용되는 문제점이 있다. 또한, 어휘 탐색에서 어휘의 의미가 다양하여 탐색된 어휘가 사용자의 요구에 부합되지 않는 문제점을 가진다. 이러한 문제를 개선하기 위해 GMM(Gaussian Mixture Model)을 이용한 음소인식을 수행하고, 개선된 k-means 알고리즘을 이용하여 어휘 특성에 따른 제한적인 탐색 문제점을 해결하였다. 성능 실험은 기존의 시스템과 비교하여 정확도와 재현율로 대변되는 효과성을 측정하였으며, 성능 실험 결과 정확도는 83%, 재현율은 67%로 나타났다.

분할기반 은닉 마르코프 모델과 다층 퍼셉트론 결합 영문수표필기단어 인식시스템 (A Segmentation-Based HMM and MLP Hybrid Classifier for English Legal Word Recognition)

  • 김계경;김진호;박희주
    • 한국지능시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.200-207
    • /
    • 2001
  • 본 논문에서는 분할기반 은닉 마르코프 모델(segmentation based hidden Markov model)과 다층 퍼셉트론 (multi-layer perceptron)을 결합한 영문수표 필기단어 (legal word) 인식시스템을 제안하였다. 가변길이의 필기체 영문 단어 분할결과를 인식할 수 있도록 은닉 마르코프 모델을 이용하여 명확한 분할기반 (explicit segmentation-based) 단어단위 (word level) 인식기를 구현하고 다층 퍼셉트론을 이용하여 내재적 분할기반 (implicit segmentation-based) 단어단위 인식기를 구현하였다. 그리고 이종(heterogeneous)의 두 인식기를 새로운 결합 확률추정방식에 따라 결합함으로서 상호 보완 능력을 극대화시킬 수 있는 영문수표 필기단어 인식시스템을 구현하였다. 제안한 시스템을 캐나다 콘코디아 대학의 CENPARMI 영문 수표 데이터베이스에 적용하여 실험해 본 결과 기존의 연구결과에 비해 비교적 우수한 인식성능을 얻을 수 있었다.

  • PDF

변형 VGG 모델의 전처리를 이용한 부품도면 문자 인식 성능 개선 (Performance Improvement of Optical Character Recognition for Parts Book Using Pre-processing of Modified VGG Model)

  • 신희란;이상협;박장식;송종관
    • 한국전자통신학회논문지
    • /
    • 제14권2호
    • /
    • pp.433-438
    • /
    • 2019
  • 본 논문에서는 기계 서비스 부품 도면에서 숫자를 인식하기 위하여 입력 영상에 대한 전처리와 딥러닝 모델을 제안한다. 서비스 부품 도면의 숫자를 인식하는데 있는 지시선과 도형에 의한 오검출 또는 오인식을 개선하기 위하여 수학적 형태학 필터링 전처리를 한다. 숫자 인식을 위하여 VGG-16 모델을 축소 변형한 7 개의 계층을 가지는 VGG 모델을 적용함으로써 인식 성능을 개선한다. 서비스 부품 도면의 숫자 인식 실험 결과, 제안하는 방법이 인식률 95.57%, 정확도는 92.82%로 종래의 방법에 현저히 개선된 결과를 얻었다.

세탁물 관리를 위한 문자인식 딥러닝 모델 경량화 (Lightweight Deep Learning Model of Optical Character Recognition for Laundry Management)

  • 임승진;이상협;박장식
    • 한국산업융합학회 논문집
    • /
    • 제25권6_3호
    • /
    • pp.1285-1291
    • /
    • 2022
  • In this paper, we propose a low-cost, low-power embedded environment-based deep learning lightweight model for input images to recognize laundry management codes. Laundry franchise companies mainly use barcode recognition-based systems to record laundry consignee information and laundry information for laundry collection management. Conventional laundry collection management systems using barcodes require barcode printing costs, and due to barcode damage and contamination, it is necessary to improve the cost of reprinting the barcode book in its entirety of 1 billion won annually. It is also difficult to do. Recognition performance is improved by applying the VGG model with 7 layers, which is a reduced-transformation of the VGGNet model for number recognition. As a result of the numerical recognition experiment of service parts drawings, the proposed method obtained a significantly improved result over the conventional method with an F1-Score of 0.95.

Martial Arts Moves Recognition Method Based on Visual Image

  • Husheng, Zhou
    • Journal of Information Processing Systems
    • /
    • 제18권6호
    • /
    • pp.813-821
    • /
    • 2022
  • Intelligent monitoring, life entertainment, medical rehabilitation, and other fields are only a few examples where visual image technology is becoming increasingly sophisticated and playing a significant role. Recognizing Wushu, or martial arts, movements through the use of visual image technology helps promote and develop Wushu. In order to segment and extract the signals of Wushu movements, this study analyzes the denoising of the original data using the wavelet transform and provides a sliding window data segmentation technique. Wushu movement The Wushu movement recognition model is built based on the hidden Markov model (HMM). The HMM model is trained and taught with the help of the Baum-Welch algorithm, which is then enhanced using the frequency weighted training approach and the mean training method. To identify the dynamic Wushu movement, the Viterbi algorithm is used to determine the probability of the optimal state sequence for each Wushu movement model. In light of the foregoing, an HMM-based martial arts movements recognition model is developed. The recognition accuracy of the HMM model increases to 99.60% when the number of samples is 4,000, which is greater than the accuracy of the SVM (by 0.94%), the CNN (by 1.12%), and the BP (by 1.14%). From what has been discussed, it appears that the suggested system for detecting martial arts acts is trustworthy and effective, and that it may contribute to the growth of martial arts.

IPA를 활용한 다국어 음성 인식에 관한 연구 (A Study on the Multilingual Speech Recognition using International Phonetic Language)

  • 김석동;김우성;우인성
    • 한국산학기술학회논문지
    • /
    • 제12권7호
    • /
    • pp.3267-3274
    • /
    • 2011
  • 최근 다양한 모바일 기기의 사용자 환경과 다양한 음성인식 소프트웨어의 영향으로 음성인식 기술역시 빠르게 발전되고 있다. 그러나 다국어를 대상으로 하는 음성인식의 경우 다국어 혼합음성에 대한 이해 부족과 시스템 성능의 한계로 인하여 원활한 인식율의 개선은 이루어지지 않고 있다. 여러 나라의 혼합 언어로 표현된 음성의 경우 하나의(단일) 음성모델로 구현하는 것이 쉽지 않고, 또한 여러 개의 음성모델을 사용한 시스템의 경우 음성인식 성능의 저하라는 문제점이 있다. 이에 따라 다양한 언어로 구성되어 있는 음성을 하나의 음성모델로 표현할 수 있는 다국어 음성인식 모바일 시스템의 개발 필요성이 증가되고 이에 대한 연구가 필요하다. 본 논문에서는 모바일 시스템에서 다국어 혼합 음성모델을 사용하기 위한 기본연구로써 한국어와 영어 음성을 국제 음성기호(IPA)로 인식하는 통합음성모델 시스템 구축을 연구하였고, 한국어와 영어 음소를 동시에 만족하는 IPA모델을 찾는데 중점을 두어 실험한 결과 우리말 음성은 94.8%, 영어 음성은 95.36%라는 인식률을 얻을 수 있었다.

HMM을 이용한 지휘 동작의 인식 (Recognition of Conducting Motion using HMM)

  • 문형득;구자영
    • 한국컴퓨터정보학회논문지
    • /
    • 제9권1호
    • /
    • pp.25-30
    • /
    • 2004
  • 본 논문은 지휘자의 지휘 동작으로부터 일련의 영상들을 추출하여 지휘자가 지휘하는 박자를 인식하는 방법을 제안하고 있다 색상판별에 의해서 손의 위치를 감지하였으며 양자화를 통해서 그 위치를 기호화함으로써 지휘 동작을 일련의 기호로 표현하였다. 변형을 포함하는 기호열의 인식에 좋은 결과를 보이는 HMM(Hidden Markov Model)을 사용함으로써 표현된 기호열을 지휘박자로 인식하도록 하는 시스템을 구성하였다.

  • PDF

로봇 시스템에의 적용을 위한 음성 및 화자인식 알고리즘 (Implementation of the Auditory Sense for the Smart Robot: Speaker/Speech Recognition)

  • 조현;김경호;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1074-1079
    • /
    • 2007
  • We will introduce speech/speaker recognition algorithm for the isolated word. In general case of speaker verification, Gaussian Mixture Model (GMM) is used to model the feature vectors of reference speech signals. On the other hand, Dynamic Time Warping (DTW) based template matching technique was proposed for the isolated word recognition in several years ago. We combine these two different concepts in a single method and then implement in a real time speaker/speech recognition system. Using our proposed method, it is guaranteed that a small number of reference speeches (5 or 6 times training) are enough to make reference model to satisfy 90% of recognition performance.

  • PDF

다중 관측열을 토대로한 HMM에 의한 음성 인식에 관한 연구 (A study on the speech recognition by HMM based on multi-observation sequence)

  • 정의봉
    • 전자공학회논문지S
    • /
    • 제34S권4호
    • /
    • pp.57-65
    • /
    • 1997
  • The purpose of this paper is to propose the HMM (hidden markov model) based on multi-observation sequence for the isolated word recognition. The proosed model generates the codebook of MSVQ by dividing each word into several sections followed by dividing training data into several sections. Then, we are to obtain the sequential value of multi-observation per each section by weighting the vectors of distance form lower values to higher ones. Thereafter, this the sequential with high probability value while in recognition. 146 DDD area names are selected as the vocabularies for the target recognition, and 10LPC cepstrum coefficients are used as the feature parameters. Besides the speech recognition experiments by way of the proposed model, for the comparison with it, the experiments by DP, MSVQ, and genral HMM are made with the same data under the same condition. The experiment results have shown that HMM based on multi-observation sequence proposed in this paper is proved superior to any other methods such as the ones using DP, MSVQ and general HMM models in recognition rate and time.

  • PDF