• Title/Summary/Keyword: Recirculation ratio

Search Result 284, Processing Time 0.02 seconds

Effects of Fuel Blending Ratio and Oxygen Concentration on Auto-ignition Characteristics of n-Decane/Ethanol Blended Fuels (연료 혼합비율 및 산소농도가 노말데케인/에탄올 혼합연료의 점화특성에 미치는 영향)

  • Oh, Chae Ho;Kang, Ki Joong;Choi, Gyung Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.749-757
    • /
    • 2017
  • To cope with the development of alternative fuels and international environmental regulations, this study provides a numerical analysis of the effects of composition and temperature changes of n-decane and ethanol on auto-ignition characteristics. CHEMKIN-PRO is used as the analysis program and the LLNL model is used as the reaction model. The numerical results show that the ignition delay time increases as the mole fraction of ethanol increases for temperatures below 1000 K, where low temperature reactions occur. Because of the high octane number of ethanol, the high percentage of ethanol delays the increase in the concentration of OH radicals that cause ignition. The oxygen concentration in the mixture is changed to apply the exhaust gas recirculation and a numerical analysis is then performed. As the oxygen concentration decreases, the total ignition delay time increases because the nitrogen gas acts as a thermal load in the combustion chamber.

Development of a 3-Dimensional Turbulent Reaction Computer program for the Incineration of a Carbon Tetrachloride($CCl_4$) ( I ) (사염화탄소($CCl_4$) 소각을 위한 로타리 킬른 소각로 3차원 난류반응 컴퓨터 프로그램 개발( I ))

  • 엄태인;장동순
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.100-109
    • /
    • 1994
  • In this study, it is investigated that the possibility of the numerical simulation for the incineration of the hazardous material, crbon tetrachloride($CCl_4$). A 3-dimensional numerical technology is applied for turbulent reacting flows of the full-scale Dow Chemical incinerator. The calculations are made by a CRAY-2S, super computer. The major parameters considered in this study are kiln revolution rate (rpm), filling ratio of the solid waste(f), burner Injection velocity and angle, and turbulent air jets for swirl. And the employed turbulent reaction model is the eddy break-up model which is a kind of fast chemistry model assuming general equilibrium and used for a premixed flame. The calculated flow fields are presented and discussed. 1) The presence of turbulent air nozzles for swirl gives rise to visible increase of the convective motion over the region of the solid waste. This implies the possibility to enhance the mixing of the waste with the surrounding all and thereby to reduce thermal and species stratification, which were reported in a large rotary kiln operation. 2) Considering that the location of the recirculation region has a strong relation with the heating rate of the solid waste, the control of the recirculation region by the burner injection angle Is quite desirable in the sense of the flexible design of the rotary kiln incinerator for a carbon tetrachloride. 3) Finally, it is found that the eddy break-up model Is not suitable for carbon tetrachloride($CCl_4$) because this model is not incorporated the flame inhibition trend due to the presence $CCl_4$compound.

  • PDF

Flow Structure Around a Rectangular Prism Placed in a Thick Turbulent Boundary Layer (두꺼운 난류경계층 내부에 놓인 직사각형 프리즘 주위의 유동구조)

  • Kim, Gyeong-Cheon;Ji, Ho-Seong;Chu, Jae-Min;Lee, Seok-Ho;Seong, Seung-Hak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.578-586
    • /
    • 2002
  • Flow structures around a rectangular prism have been investigated by using a PIV(Particle Image Velocimetry) technique. A thick turbulent boundary layer was generated by using spires arid roughness elements. The boundary layer thickness, displacement thickness and momentum thickness were 650mm, 117.4mm and 78mm, respectively. The ratio between the model height(40mm) and the boundary layer thickness H/$\delta$, was 0.06. The Reynolds number based on the free stream velocity and the height of the model was 7.9$\times$10$^3$. The PIV measurements were performed at three different wall normal planes. Three recirculation regions at forward facing step, top of the roof and backward facing step are clearly seen and show three dimensional features. Dramatic changes of flow patterns are observed in the wake regions in the different spanwise wall normal planes. Instead of reattachment and recirculation zone, rising streamlines are depicted at the normal planes near the side wall due to the interaction with a rising horse shoe vortex. The peak of turbulent kinetic energy occurs at the separation bubble on top of the roof and the magnitude is 2.5 times higher compared with that of the wake region.

Influence of fuel injection pattern on combustion and emissions characteristics of diesel engine by using emulsified fuel applied with EGR system (에멀젼연료와 EGR의 동시적용 디젤엔진에 있어서 연료 분사 패턴이 연소와 배기가스에 미치는 영향)

  • Yoo, Dong-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1064-1069
    • /
    • 2014
  • The use of emulsified fuel and EGR (Exhaust gas recirculation) system are effective methods to reduce NOx emission from diesel engines. In general, it is considered that EGR method influences diesel engine combustion in three different ways: thermal, chemical and dilution effect. Among others, the thermal effect is related to the increase of specific heat capacity due to the presence of $CO_2$ and $H_2O$ in inlet air. Meanwhile, emulsified fuel method of utilizing latent heat of vaporization and miro-explosion has been recognized as an effective technique for reducing diesel engine emissions. In this paper, an author studied on combustion and emission characteristics by using emulsified fuel (EF, Light oil : 80% + Water : 20%) and EGR (30% EGR ratio) system. And the effect of fuel injection pattern control was investigated.

Efficiency Investigation of Vanishing Composting Machine Using Exhaust gas Recirculation system (배기가스순환시스템을 적용한 소멸 퇴비화장치의 효율검토)

  • Phae, Chae-Gun;Kim, Jong-Chan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.2
    • /
    • pp.93-104
    • /
    • 1999
  • Existing composting system was improved to have a high performance for organic degradation, deodorization and energy reduction. Compared with conventional devices, this developed system uses the heat recovered from platinum catalytic tower by three times heat exchange in which 65% of exhaust gas was recirculated. Evaporation of water was made easy by maintaining negative pressure in entire system. It was possible for reaction to be maintained steadily by microorganism agent. The optimum mixing volume ratio of garbage to sawdust was 15:1 contrary to 20:1 in conventional one. Moreover, aerobic condition was maintained efficiently. Effects obtained by using a inner circulation system were as follows. It was possible to reduce the ammonia causing offensive odor and verified that consumption of electricity cut down to 1/3 with reduction of exhaust gas inflowing. According to this inner circulation, the optimum air flow was $0.44m^3$ to 100kg treatment capacity. The electricity consumption was changed in proportion to inflowing air volume.

  • PDF

A Study on the Exhaust Gas Recirculation in a MILD Combustion Furnace by Using the Coanda Nozzle Effect (MILD 연소로에서 Coanda 노즐 효과를 이용한 배기가스 재순환에 관한 연구)

  • Ha, Ji Soo;Shim, Sung Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.967-972
    • /
    • 2013
  • A MILD (Moderate and Intense Low oxygen Dilution) combustion, which is effective in the reduction of NOx, is considerably affected by the recirculation flow rate of hot exhaust gas to the combustion furnace. The present study used the MILD combustor, which has coaxial cylindrical tube. The outside tube of the MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. A numerical analysis was accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of coanda nozzle geometrical parameters, nozzle passage gap length, nozzle passage length, nozzle angle and expansion length. The optimal configuration of coanda nozzle for the best entrainment flow rate was gap length, 0.5 mm, expansion angle, 4o and expansion length, 146 mm. The nozzle passage length was irrelevant to the exhaust gas entrainement.

A Numerical Study on the Open Channel Flow with Plane Wall Jet Inlet Boundary Condition (평면벽면분류의 유입경계조건을 가지는 개수로 유동에 관한 수치적 연구)

  • 설광원;이상룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.287-298
    • /
    • 1989
  • A numerical work was performed to study the flow behaviors of the open channel type flow with its geometric boundary conditions being similar to that of the Multi-Stage-Flash evaporator with and without a baffle. For the analysis, two-dimensional steady turbulent flow was assumed and the widely known k-.epsilon. turbulence model was usded. SIMPLE algorithm and the power difference scheme were used for the numerical approach. Numerical results generally agree with the previous experimental results though there are some uncertainties at far downstream and near the free surface due to the three dimensionality of the flow and surface waves. Without a baffle, the flow has basically the shape of the submerged plane wall jet with its upper boundary at downstream being sharply curved toward the free surface. For the flow with a baffle, recirculation flow patterns are observed at the upper inlet portion and at the backside of the baffle. For the case without a baffle, it was also confirmed that the ratio between the liquid level and the gate opening height is the most important parameter to determine the flow behavior.

Biogas Resource from Foodwaste Leachate Using UASB(Upflow Anaerobic Sludge Blanket) (UASB를 이용한 음폐수의 Biogas 자원화)

  • Min, Boo-Ki;Lee, Chang-Hyun;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.28-34
    • /
    • 2012
  • In this study, we operated a UASB (upflow anaerobic sludge blanket) reactor by using foodwaste leachate as a raw material with the method of Mesophilic Digestion ($35{\pm}0.5^{\circ}C$) and Thermophilic Digestion ($55{\pm}0.5^{\circ}C$). During 20 days of operating time with the Mesophilic Digestion, the recirculation ratio of effluent was stepwisely changed in every five days. Thermophilic Digestion was carried out at the same condition for Mesophilic Digestion. Results showed that the organic removal efficiency of Mesophilic Digestion was over 90% and the yield of methane production was from 66 up to 70%. The organic removal efficiency of Thermophilic Digestion was over 80% and the yield of methane production was between 62 to 68%. Also, when UASB reactor was operating to over the 3Q effluent recirculation, the experiment could be carried out economically and stably.

Analysis of Pintle Tip Thermal Damage in the Combustion Hot Firing Test with a 1.5-tonf Class Liquid-Liquid Pintle Injector (1.5톤급 액체-액체 핀틀 분사기 연소시험에서의 핀틀 팁 열손상 원인 분석)

  • Kang, Donghyuk;Hwang, Dokeun;Ryu, Chulsung;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • Using kerosene and liquid oxygen, 1.5-tonf class liquid-liquid pintle injector with rectangular two-row orifice was designed and manufactured. The combustion test of the pintle injector was carried out to verify the combustion performance and combustion stability under a supercritical condition which is the actual operation condition of the liquid rocket engine. The combustion test result showed that the pintle tip was damaged by the high temperature combustion gas in the high-mixed ratio recirculation zone of the combustion chamber. To solve this problem, the insert nozzle was installed in the pintle injector to increase cooling performance at the pintle tip. As a result of the hot firing test, installation of the insert nozzle, AR and BF had a great effect on pintle tip cooling performance.

Numerical Study of the Rib Arrangements for Enhancing Heat Transfer in a Two-pass Channel of Large Aspect Ratio (종횡비가 큰 이차유로에서 냉각성능 향상을 위한 요철배열 연구)

  • Han, Sol;Choi, Seok Min;Sohn, Ho-Seong;Cho, Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.161-169
    • /
    • 2017
  • The present study investigated the effect of the rib arrangement and a guide vane for enhancing internal cooling of the blade. Two types of rib arrangements were used in the first and second passage in parallel. Aspect ratio of the channel was 5 and a fixed Reynolds number based on hydraulic diameter was 10,000. The attack angle of rib was $60^{\circ}$, rib pitch-to-height ratio (p/e) was 10, and the rib height-to-hydraulic-diameter ratio ($e/D_h$) was 0.075. The effect of an interaction between Dean vortices and the secondary vortices from the first passage was observed. Overall, the attack angle of rib in the first passage was dominant factor to heat transfer and flow patterns in turning region. Also, the channel with a guide vane showed enhanced heat transfer at the tip surface with reducing flow separation and recirculation.