• Title/Summary/Keyword: Recirculation flow

Search Result 658, Processing Time 0.031 seconds

The characteristics of temperature distribution, NOx and CO formation in a MILD combustor with the variation of equivalence ratio (당량비 변화에 따른 MILD 연소로의 온도 분포 및 NOx, CO 생성 특성)

  • Ha, Ji-Soo;Yu, Sang-Yeol;Sim, Sung-Hoon;Kim, Tae-Kwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.485-490
    • /
    • 2010
  • MILD (Moderate and Intense Low Oxygen Dilution) combustion is a technique which is able to reduce NOx formation and to uniform temperature distribution in the furnace by recirculating the exhaust gas to the fresh air and fuel. This study focuses on finding optimal condition of MILD combustor by changing equivalence ratio with fuel and air flow. The present experiment employs six thermocouple sensors in the furnace, and two concentration probes of NOx and CO at the exhaust exit pipe respectively. The MILD combustion phenomena have been observed at the condition of equivalent ratios of 0.71~0.73, and the temperature uniformity, NOx and CO concentration are also examined at the MILD combustion condition.

The turbulent wake of a square prism with wavy faces

  • Lin, Y.F.;Bai, H.L.;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.23 no.2
    • /
    • pp.127-142
    • /
    • 2016
  • Aerodynamic effects, such as drag force and flow-induced vibration (FIV), on civil engineering structures can be minimized by optimally modifying the structure shape. This work investigates the turbulent wake of a square prism with its faces modified into a sinusoidal wave along the spanwise direction using three-dimensional large eddy simulation (LES) and particle image velocimetry (PIV) techniques at Reynolds number $Re_{Dm}$ = 16,500-22,000, based on the nominal width ($D_m$) of the prism and free-stream velocity ($U_{\infty}$). Two arrangements are considered: (i) the top and bottom faces of the prism are shaped into the sinusoidal waves (termed as WSP-A), and (ii) the front and rear faces are modified into the sinusoidal waves (WSP-B). The sinusoidal waves have a wavelength of $6D_m$ and an amplitude of $0.15D_m$. It has been found that the wavy faces lead to more three-dimensional free shear layers in the near wake than the flat faces (smooth square prism). As a result, the roll-up of shear layers is postponed. Furthermore, the near-wake vortical structures exhibit dominant periodic variations along the spanwise direction; the minimum (i.e., saddle) and maximum (i.e., node) cross-sections of the modified prisms have narrow and wide wakes, respectively. The wake recirculation bubble of the modified prism is wider and longer, compared with its smooth counterpart, thus resulting in a significant drag reduction and fluctuating lift suppression (up to 8.7% and 78.2%, respectively, for the case of WSP-A). Multiple dominant frequencies of vortex shedding, which are distinct from that of the smooth prism, are detected in the near wake of the wavy prisms. The present study may shed light on the understanding of the underlying physical mechanisms of FIV control, in terms of passive modification of the bluff-body shape.

Oxygen Transfer Characteristics & Pure Oxygen Application Study on Circulation Flow Rate of the JLB (Jet Loop Bioreactor) (Jet 폭기 시스템의 순환유량에 따른 산소전달 특성 및 순산소 적용성 검토)

  • Park, Noh-Back;Song, Yong-Hyo;Pack, June-Gue;Jun, Hang-Bae
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.896-901
    • /
    • 2009
  • In this study, in order to apply the air and pure oxygen in the Jet Loop Reactor (JLB) in which the oxygen transfer rate is high, differentiate the operation mode according to each air flowrate and liquid flowrate and investigate the oxygen transfer characteristic, an experiment was carried out. The oxygen concentration with the air flowrate ($Q_g$) and liquid flowrate ($Q_L$) was identical but the oxygen transfer coefficient ($K_L{\cdot}a$) is linear depending on degree of two factors. The width of an increase is small in $0.1min^{-1}$ when the air flowrate is 0.2 L/min with increasing the liquid flowrate. Whereas, the increment was exposed to be very high for $1.5min^{-1}$ when the air flowrate was 5 L/min. In the experiments using the pure oxygen, it was 30 mg/L of oxygen concentration finally and it was 3.5 times than using the air. But the time reached the saturated concentration was similar to using the air, and $K_L{\cdot}a$ was similar to using the air too. Analysis between two independent variable and oxygen transfer of the correlation is the same model like $K_L{\cdot}a={0.0161Q_L}^{1.5371}{Q_g}^{0.5433}$ using with coefficient non linear regression analysis. It was resulted that the liquid flowrate were approximately three times than air flowrate on effect to oxygen transfer rate.

A Study on Mesoscale Atmospheric Dispersion of Radioactive Particles Released from Nuclear Power Plants (원전부지 주변 국지순환에 따른 방사성 물질의 대기확산 특성 연구)

  • Lee, Gab-Bock;Lee, Myung-Chan;Song, Young-I1
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.4
    • /
    • pp.273-288
    • /
    • 1997
  • A three dimensional sea-land breeze model and Lagrangian particle dispersion model have been employed for the study on the mesoscale atmospheric dispersion of radioactive materials released from Wolsung NPPs. In this study, atmospheric dispersion simulations are carried out under two synoptic weather conditions : the geostrophic flow is a weak northerly wind(CASE 1) and a strong northerly wind(CASE 2) on a clear day in spring. The results show that atmospheric dispersion is affected by sea-land breeze and the recirculation of particles by the change of wind direction between sea breeze and land breeze plays an important role in atmospheric concentration distribution of radoactive materials.

  • PDF

Three-Dimensional Natural Convection from a Single Module on the Wall of a Vertical Parallel-Plate Channel (수직평행채널의 벽면에 부착된 단일모듈로부터의 3차원 자연대류 열전달)

  • Riu, K.J.;Lee, J.H.;Kim, H.W.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.29-41
    • /
    • 1999
  • Three-dimensional natural convective heat transfer in a vertical channel with a protruding single module was investigated experimentally. The particular interest was in the removal of thermal energy from the module by convective heat transfer. Hence radiative and conductive heat losses were estimated by using thermocouples and heat flux sensor respectively. The flow fields in the channel were visualized by means of a smoke-method. Also, local temperatures were measured by thermocouples inside the channel, along the vertical wall and module surface. It is found that convective heat transfer was promoted at the lower comer of the module and was decreased at the upper comer due to a recirculation zone. A general correlation of the critical channel ratios was found as a function of Rayleigh number. For the range of $8.28{\times}10^3<Ra^*_c<3.48{\times}10^6$, a useful correlation for the mean Nusselt number was proposed as a function of modified channel Rayleigh number.

  • PDF

Investigation of Effect of Shape of Pintle on Drag and Thrust Variation (핀틀 형상에 따른 추력 및 항력 변화 연구)

  • Park, Jong-Ho;Kang, Min-Ho;Kim, Joung-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.237-243
    • /
    • 2010
  • In this study, the effect of the shape of a pintle(obstacle) on thrust-modulation performance and drag in a pintle rocket was investigated by a cold flow test and by computational fluid dynamics. Pintle movement caused a monotonic increase in the chamber pressure. Thrust generated by the pressure distribution on the pintle body was linearly changed to the chamber pressure, and this thrust was greater than that generated by the nozzle-wall pressure distribution. Because the shock pattern in the nozzle changes with the shape of the pintle body and pressure ratio, the thrust generated by the nozzle-wall pressure is not directly affected by chamber pressure. The drag due to the pintle(obstacle) can be minimized for a fully linear pintle shape, regardless of chamber pressure.

Hydrolysis of Cellulose by Immobilized Cellulase in a Packed Bed Reactor (충진층 반응기에서 고정화 cellulase에 의한 셀룰로스 가수 분해)

  • Kang, Byung Chul;Lee, Jong Baek
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1365-1370
    • /
    • 2013
  • Immobilized cellulase on weak ion exchange resin showed a typical Langmuir adsorption isotherm. Immobilized cellulase had better stability with respect to pH and temperature than free cellulase. Kinetics of thermal inactivation on free and immobilized cellulase followed first order rate, and immobilized cellulase had a longer half-life than free cellulase. The initial rate method was used to characterize the kinetic parameters of free and immobilized enzyme. The Michaelis-Menten constant $K_m$ was higher for the immobilized enzyme than it was for the free enzyme. The effect of the recirculation rate on cellulose degradation was studied in a recycling packed-bed reactor. In a continuous packed-bed reactor, the increasing flow rate of cellulose decreased the conversion efficiency of cellulose at different input lactose concentrations. Continuous operation for five days was conducted to investigate the stability of long term operation. The retained activity of the immobilized enzymes was 48% after seven days of operation.

Design of Venturi Dump Surface for Pre-filming Airblast Injector (예막 공기충돌형 분사기의 벤추리 덤프면 설계)

  • Shin, Dongsoo;Choi, Myunghwan;Radhakrishnan, Kanmaniraja;Koo, Jaye;Jung, Seungchai
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.44-54
    • /
    • 2018
  • In a spray experiment using a venturi mounted on a lean premixed LPP injector, droplets appear to have non-uniform distributions. To solve this problem, the exit angle of the venturi was changed to form a dump surface on the nozzle neck. The dump surface improved the atomization performance and minimized droplet loss while forming recirculation zone in the venturi exit. In order to solve the non-uniform spray of the injector, the flow characteristics inside the venturi and SMD of the spray are compared. Finally, an optimum venturi shape is selected to minimize the spray loss and improve the spray performance.

Spatial correlation of aerodynamic forces on 5:1 rectangular cylinder in different VIV stages

  • Lei, Yongfu;Sun, Yanguo;Zhang, Tianyi;Yang, Xiongwei;Li, Mingshui
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.81-90
    • /
    • 2022
  • To better understand the vortex-induced vibration (VIV) characteristics of a 5:1 rectangular cylinder, the distribution of aerodynamic force and the non-dimensional power spectral density (PSD) of fluctuating pressure on the side surface were studied in different VIV development stages, and their differences in the stationary state and vibration stages were analyzed. The spanwise and streamwise correlations of surface pressures were studied, and the flow field structure partitions on the side surface were defined based on the streamwise correlation analysis. The results show that the variation tendencies of mean and root mean square (RMS) pressure coefficients are similar in different VIV development stages. The RMS values during amplitude growth are larger than those at peak amplitude, and the smallest RMS values are observed in the stationary state. The spanwise correlation coefficients of aerodynamic lifts increase with increase of the peak amplitude. However, for the lock-in region, the maximum spanwise correlation coefficient for aerodynamic lifts occurs in the VIV rising stage rather than in the peak amplitude stage, probably due to the interaction of vortex shedding force (VSF) and self-excited force (SEF). The streamwise correlation results show that the demarcation point positions between the recirculation region and the main vortex region remain almost constant in different VIV development stages, and the reattachment points gradually move to the tailing edge with increasing amplitude. This study provides a reference to estimate the demarcation point and reattachment point positions through streamwise correlation and phase angle analysis from wind tunnel tests.

An automatic rotating annular flume for cohesive sediment erosion experiments: Calibration and preliminary results

  • Steven Figueroa;Minwoo Son
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.319-319
    • /
    • 2023
  • Flows of water in the environment (e.g. in a river or estuary) generally occur in complex conditions. This complexity can hinder a general understanding of flows and their related sedimentary processes, such as erosion and deposition. To gain insight in simplified, controlled conditions, hydraulic flumes are a popular type of laboratory research equipment. Linear flumes use pumps to recirculation water. This isn't appropriate for the investigation of cohesive sediments as pumps can break fragile cohesive sediment flocs. To overcome this limitation, the rotating annular flume (RAF) was developed. While not having pumps, a side-effect is that unwanted secondary circulations can occur. To counteract this, the top and bottom lid rotate in opposite directions. Furthermore, a larger flume is considered better as it has less curvature and secondary circulation. While only a few RAFs exist, they are important for theoretical research which often underlies numerical models. Many of the first-generation of RAFs have come into disrepair. As new measurement techniques and models become available, there is still a need to research cohesive sediment erosion and deposition in facilities such as a RAF. New RAFs also can have the advantage of being automatic instead of manually operated, thus improving data quality. To further advance our understanding of cohesive sediment erosion and deposition processes, a large, automatic RAF (1.72 m radius, 0.495 m channel depth, 0.275 m channel width) has been constructed at the Hydraulic Laboratory at Chungnam National University (CNU), Korea. The RAF has the ability to simulate both unidirectional (river) and bidirectional (tide) flows with supporting instrumentation for measuring turbulence, bed shear stress, suspended sediment concentraiton, floc size, bed level, and bed density. Here we present the current status and future prospect of the CNU RAF. In the future, calibration of the rotation rate with bed shear stress and experiments with unidirectional and bidirectional flow using cohesive kaolinite are expected. Preliminary results indicate that the CNU RAF is a valuable tool for fundamental cohesive sediment transport research.

  • PDF