• Title/Summary/Keyword: Recirculation flow

Search Result 656, Processing Time 0.023 seconds

Modeling flow and scalar dispersion around Cheomseongdae

  • Kim, Jae-Jin;Song, Hyo-Jong;Baik, Jong-Jin
    • Wind and Structures
    • /
    • v.9 no.4
    • /
    • pp.315-330
    • /
    • 2006
  • Flow and scalar dispersion around Cheomseongdae are numerically investigated using a three-dimensional computational fluid dynamics (CFD) model with the renormalization group (RNG) $k-{\varepsilon}$ turbulence closure scheme. Cheomseongdae is an ancient astronomical observatory in Gyeongju, Korea, and is chosen as a model obstacle because of its unique shape, that is, a cylinder-shaped architectural structure with its radius varying with height. An interesting feature found is a mid-height saddle point behind Cheomseongdae. Different obstacle shapes and corresponding flow convergences help to explain the presence of the saddle point. The predicted size of recirculation zone formed behind Cheomseongdae increases with increasing ambient wind speed and decreases with increasing ambient turbulence intensity. The relative roles of inertial and eddy forces in producing cavity flow zones around an obstacle are conceptually presented. An increase in inertial force promotes flow separation. Consequently, cavity flow zones around the obstacle expand and flow reattachment occurs farther downwind. An increase in eddy force weakens flow separation by mixing momentum there. This results in the contraction of cavity flow zones and flow reattachment occurs less far downwind. An increase in ambient wind speed lowers predicted scalar concentration. An increase in ambient turbulence intensity lowers predicted maximum scalar concentration and acts to distribute scalars evenly.

Flow Measurements at the Exit of a Throttle Valve in Gasoline Engines (가솔린 엔진의 스로틀 밸브 출구에서 유동측정)

  • Kim, Sung-Cho;Kim, Cheol;Choi, Jong-Geon;Wee, Hwa-Bok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • The flow and combustion patterns have been investigated inside the gasoline engine cylinder with the swirl or tumble flow, whereas the air flow characteristics, which are generated in the part of intake system before entering into the intake manifold, have not been known completely. It is necessary to analyze the flow field in the intake system consisting of air rater, throttle valve and intake manifold. The throttle valve, used to control the intake air flow rate, is important because it makes various mass flow rate and flow patterns. Three-dimen-sional How characteristics such as velocities, turbulent intensities and Reynolds shear stresses are measured by the hot wire anemometer at the exit of the throttle valve with the variation in the valve opening angle($15^{\circ}$, $45^{\circ}$, $75^{\circ}$ and $90^{\circ}$) and the Reynolds numbers (45000, 70000 and 140000). There are a lot of changes in flow characteristics at $75^{\circ}$ due to the large recirculation flow comparing with those of the other cases, and the streamwise velocity is especially enforced strongly below the valve shaft. The other component velocities are relatively large near the centerline parallel to the valve shaft. The effects of the Reynolds number on the flow field are not severe.

Numerical Simulation for Recirculation of Air Mass in the Coastal Region Using Lagrangian Particle Dispersion Model (라그랑지안 입자확산모델을 이용한 광양만 권역에서의 공기괴 재순환현상 수치모의)

  • Lee, Hwa-Woon;Lee, Hyun-Mi;Lee, Soon-Hwan;Choi, Hyun-Jung
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.157-170
    • /
    • 2010
  • Air mass recirculation is a common characteristic in the coastal area as a result of the land-sea breeze circulation. This study simulates the recirculation of air mass over the Gwangyang Bay using WRF-FLEXPART and offers a basic information about the effective domain size that can reflect recirculation. For this purpose, WRF is set up four nested domains and three cases are selected. Subsequently FLEXPART is operated on the basis of WRF output. During the clear summer days with weak wind speed, particles that emitted from Yeosu national industrial complex and Gwangyang iron works flow into emission sources because of the land-sea breeze. When land-sea breeze is strengthen, the recirculation phenomena appears clearly. However particles aren't recirculated under weak synoptic condition. Also plume trajectory is analyzed and as a consequence, the smallest domain area have to be multiplied by 1.3 to understand recirculated dispersion pattern of particles.

LES Studies on the Characteristics of Turbulent Premixed Flame with the Configurations of Burner Exit (버너 출구의 형상변화에 따른 난류 예혼합 화염의 특성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.96-104
    • /
    • 2006
  • In the present paper, the effects of combustion instability on flow structure and flame dynamic with the configurations of burner exit in a model gas turbine combustor are investigated using large eddy simulation(LES). A G-equation flamelet model is employed to simulate the unsteady flame behavior. As a result of mean flow field, the change of divergent half angle(${\alpha}$) at burner exit results in variations in the size and shape of the central toroidal recirculation(CTRZ) as well as flame length by changing corner recirculation zone(CRZ). The case of ${\alpha}=45^{\circ}$ show smaller size and upstream location of CTRZ than that of $90^{\circ}$ and $30^{\circ}$ by the development of higher swirl velocity. The flame length in the case of ${\alpha}=45^{\circ}$ is the most shortest, while that in the case of ${\alpha}=30^{\circ}$ is the longest by the decrease of effective reactive area with the absence of CRZ. Through the analysis of pressure fluctuation, it is identified that the case of ${\alpha}=45^{\circ}$ shows the most largest damping effect of pressure oscillation in all configurations and brings in the noise reduction of 2.97dB, comparing with that of ${\alpha}=30^{\circ}$ having the largest pressure oscillation. These reasons are discussed in detail through the analysis of unsteady phenomena about recirculation zone and flame surface. Finally the effects of flame-acoustic interaction are evaluated using local Rayleigh parameter.

  • PDF

A Study on the Flow Characteristics and Pressure Loss of a Muffler for the Variation of Volumetric Rate and Offset (체적비와 오프셋 변화에 의한 소음기내의 유동특성과 압력손실에 관한 연구)

  • 김민호;정우인;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.93-99
    • /
    • 2000
  • It is well known that an automotive muffle strongly influences engine efficiency and noise reduction. The performance of a muffler system is determined by the geometrical parameters such as the relative location of an inlet and outlet pipe size and cross sectional geometry of a chamber. In this study numerical analysis was performed to examine the flow characteristics in the simple automotive muffler for the variation of volumetric rate and offset. The computational grid generation was carried out. The RNG k-$\varepsilon$ turbulence model was applied. To provide the boundary condition for numerical analysis the experimental measurement wes carried out. As a result of this study we could understand that there was a recirculation flow inside muffler and pressure loss depends on the variation of volumetric rate and offset.

  • PDF

The Third National Congress on Fluids Engineering: Thermal design for the vertical type oven of soldering process. (반도체 공정용 수직로 설계를 위한 열유동 제어.)

  • Jeong, Won-Jung;Kwon, Hyun-Goo;Cho, Hyung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.561-564
    • /
    • 2006
  • Because of new requirements related to the employment of SMT(Surface Mounting Technology) manufacturing and the diversity of components on high density PCB(printed circuit boards), Thermal control of the reflow process is required in oder to achieve acceptable yields and reliability of SMT assemblies. Accurate control of the temperature distribution during the reflow process is one of the major requirements, especially in lead-free assembly. This study has been performed for reflow process using the commercial CFD tool(Fluent) for predicting flow and temperature distributions. There was flow recirculation region that had a weak point in the temperature uniformity. Porous plate was installed to prevent and minimize flow recirculation region for acquiring uniform temperature in oven. This paper provided design concept from CFD results of the steady state temperature distribution and flow field inside a reflow oven.

  • PDF

A study on Flow Characteristic inside Passenger's Compartment under Recirculation Cool vent mode using CFX (CFX를 이용한 내부순환모드에서의 자동차 내부 유동특성 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Kim, Kyung-Chun;Ji, Ho-Seong
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • The flow characteristics under recirculation cool vent mode is numerically studied using commercial fluid dynamic code(CFX). For the reliable analysis, real vehicle and human FE model is employed in grid generation process. The geometrical location and shape of panel vent, and exhaust vent is set as that of real vehicle model. The flowrate of the working fluid is determined as 330CMH which is equivalent to 70 percent of maximum capacity of HVAC system. The high velocity regions are formed around 4 each panel vent. Because of the non-symmetrically located exhaust, non-uniform flow and partial backflow near the door trim is observed. Streaklines start from each panel vent show the flow pattern of the airflow in the passenger's compartment very well.

Investigation on the Turbulent Swirling Flow Field within the Combustion Chamber of a Gun-Type Gas Burner (Gun식 가스버너의 연소실내 난류 선회유동장 고찰)

  • Kim, Jang-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.666-673
    • /
    • 2009
  • The turbulent swirling flow field characteristics of a gun-type gas burner with a combustion chamber were investigated under the cold flow condition. The velocities and turbulent quantities were measured by hot-wire anemometer system with an X-type probe. The turbulent swirling flow field in the edge of a jet seems to cause a recirculation flow from downstream to upstream due to the unbalance of static pressure between a main jet flow and a chamber wall. Moreover, because the recirculation flow seems to expand the main jet flow to the radial and to shorten it to the axial, the turbulent swirling flow field with a chamber increases a radial momentum but decreases an axial as compared with the case without a chamber from the range of about X/R=1.5. As a result, these phenomena can be seen through all mean velocities, turbulent kinetic energy and turbulent shear stresses. All physical quantities obtained around the slits, however, show the similar magnitude and profiles as the case without a chamber within the range of about X/R=1.0.

PARAMETRIC NUMERICAL STUDY OF THE REACTING FLOW FIELD OF A COAL SLURRY ENTRAINED GASIFIER (분류층 석탄 가스화기 반응 유동장 변수 전산해석 연구)

  • Song, W.Y.;Kim, H.S.;Shin, M.S.;Jang, D.S.;Lee, Jae-Goo
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.44-51
    • /
    • 2014
  • Considering the importance of the detailed resolution of the reacting flow field inside a gasifier, the objective of this study lies on to investigate the effect of important variables to influence on the reacting flow and thereby to clarify the physical feature occurring inside the gasifier using a comprehensive gasifier computer program. Thus, in this study the gasification process of a 1.0 ton/day gasifier are numerically modeled using the Fluent code. And parametric investigation has been made in terms of swirl intensity and aspect ratio of the gasifier. Doing this, special attention is given on the detailed change of the reacting flow field inside a gasifier especially with the change of this kind of design and operation parameters. Based on this study, a number of useful conclusions can be drawn in the view of flow pattern inside gasifier together with the consequence of the gasification process caused by the change of the flow pattern. Especially, swirl effect gives rise to a feature of a central delayed recirculation zone, which is different from the typical strong central recirculation appeared near the inlet nozzle. The delayed feature of central recirculation appearance could be explained by the increased axial momentum due to the substantial amount of the presence of the coal slurry occupying over the entire gasifier in gasification process. Further, the changes of flow pattern are explained in detail with the gasifier aspect ratio. In general, the results obtained are physically acceptable in parametric study.

Effects of Meteorological and Reclaiming Conditions on the Reduction of Suspended Particles (기상 조건과 매립 조건이 비산 먼지 발생에 미치는 영향)

  • Choi, Jae-Won;Lee, Young-Su;Kim, Jae-Jin
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1423-1436
    • /
    • 2010
  • The effects of meteorological and reclaiming conditions on the reduction of suspended particles are investigated using a computational fluid dynamics (CFD) model with the k-$\varepsilon$ turbulence closure scheme based on the renormalization group (RNG) theory. Twelve numerical experiments with different meteorological and reclaiming conditions are performed. For identifying the meteorological characteristics of the target area and providing the inflow conditions of the CFD model, the observed data from the automatic weather station (AWS) near the target area is analyzed. Complicated flow patterns such as flow distortion, horse-shoe vortex, recirculation zone, and channeling flow appeared due to the topography and buildings in the domain. Specially, the flow characteristics around the reclamation area are affected by the reclaiming height, reclaiming size and windbreak height. Reclaiming height affected the wind speed above the reclaiming area. Windbreak induces more complicated flow patterns around the reclaiming area as well as within the reclaiming area. In front of the windbreak, flow is distorted as it impinges on the windbreak. As a result, upward flow is generated there. Behind the windbreak, a secondary circulation, so called, a recirculation zone is generated and flow is reattached at the end of the recirculation zone (reattachment point). At the lower part of the recirculation zone, there is a reverse flow toward the windbreak. Flow passing to the reattachment point starts to be recovered. Total amounts of suspended particles are calculated using the frictional and threshold frictional velocities, erosion potential function, and the number of surface disturbance. In the case of a 10 m-reclaiming and northerly wind, the amount of suspended particles is largest. In the presence of 5 m windbreak, the friction velocity above the reclaiming area is largely reduced. As a result, the total amount of the suspended particles largely decreases, compared to the case with the same reclaiming and meteorological conditions except for the windbreak The calculated suspended particle amounts are used as the emission rate of the dispersion model simulations and the dispersion characteristics of the suspended particles are analyzed.