• Title/Summary/Keyword: Reciprocating linear motion

Search Result 20, Processing Time 0.033 seconds

Design and Extraction of Control Parameters of a Moving-Coil-Type Linear Actuator for Driving of Linear Reciprocating Motion Control Systems (리니어 왕복운동 제어시스템 구동용 가동코일형 리니어 액츄에이터의 설계제작 및 제어정수 도출)

  • Jang, Seok-Myeong;Jeong, Sang-Seop;Park, Hui-Chang;Mun, Seok-Jun;Park, Chan-Il;Jeong, Tae-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.5
    • /
    • pp.241-248
    • /
    • 1999
  • Recently, many linear motion generators and motors are rapidly finding applications that ranges from short stroke linear motion vibrators, such as dynamic cone type loudspeakers to stirling engine driven linear reciprocating alternators, compressors, textile machines etc. The stroke-length may go up to 2m, and the maximum speed is in the range of 5 to 10m/s with oscillating frequency as high as 15 kHz. Therefore, the linear oscillating actuators(LOAs) may be considered as variable speed drivers of precise controller with stoke-length and reversal periods during the reciprocating motion. In this paper, the design, fabrication, experiments, and extraction of control parameters of a moving coil type LOA for driving of linear reciprocating motion control systems, are treated. The actuator consists of the NdFeB permanent magnets with high specific energy as the stator produced magnetic field, a coil-wrapped nonmagnetic hollow rectangular bobbin structure, and an iron core as a pathway for magnetic flux. Actually, the design is accomplished by using FEM analysis for the basic configuration of a magnetic circuit, and characteristic equations for coil design. In order to apply as the drivers of a linear motion reciprocating control system, the control parameters and circuit parameters, such as input voltage-stoke, exciting frequency-stoke, coil inductance and so on, are extracted from the analysis and experiments on concerning a fabricating LOA.

  • PDF

Effects of Kinematic Motions and Contact Configurations on the Wear of UHMWPE (접촉 형상과 기구학적 운동형태가 초고분자량 폴리에틸렌의 마멸에 미치는 영향)

  • 이권용
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.143-146
    • /
    • 2002
  • The effects of contact configuration and kinematic motion on the wear of ultrahigh molecular weight polyethylene (UHMWPE) were investigated. Two different contact configurations were adopted for wear testing under the two different kinematic motions with un-irradiated UHMWPE specimens. Wear of UHMWPE pins against the linear reciprocating stainless steel disks was 8% higher than that against the uni-directional repeat pass rotating disks. Wear of UHMWPE disks moving in the linear reciprocating motion against stainless steel ball was 37% higher than that moving in the uni-directional repeat pass rotating motion. The results in this study show that the contact configuration and kinematic motion of sliding definitely affect the wear of UHMWPE through the differences in the contact stress states of UHMWPE.

Effects of Kinematic Motions and Contact configurations on the Wear of UHMWPE (접촉 형상과 기구학적 운동형태가 초고분자량 폴리에틸렌의 마멸에 미치는 영향)

  • 이권용
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.100-104
    • /
    • 2001
  • The effects of contact configuration and kinematic motion on the wear of ultrahigh molecular weight polyethylene (UHMWPE) were investigated. Two different contact configurations were adopted for wear testing under the two different kinematic motions with un-irradiated UHMWPE specimens. Wear of UHMWPE pins against the linear reciprocating stainless steel disks was 8% higher than that against the uni-directional repeat pass rotating disks. Wear of UHMWPE disks moving in the linear reciprocating motion against stainless steel ball was 37% higher than that moving in the uni-directional repeat pass rotating motion. The results in this study show that the contact configuration and kinematic motion of sliding definitely affect the wear of UHMWPE through the differences in the contact stress states of UHMWPE.

  • PDF

Development of Simulation Tool for Dynamic Behavior of a Linear Compressor (선형 압축기의 동적 거동 예측 Simulation Tool 개발)

  • Jeon, Soo-Hong;Jeong, Weui-Bong;Lee, Hyo-Jae;Kim, Dang-Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.476-483
    • /
    • 2009
  • A linear compressor used in a refrigerator has higher energy efficiency than a reciprocating compressor, but its vibration level is still severe than others. The vibration level of linear compressor at the frequency of 60Hz is dominant since it is the exciting frequency of a motor. In this paper, a simulation tool to predict the shell vibration of the linear compressor was developed. The shell and body parts in a compressor were assumed to be 3-dimensional rigid body having both translational and rotational motion, while the reciprocating piston part has only 1-dimensional translational motion. The flexible loop-pipe was modeled by in-house code of finite element method. To verify the developed tool, five cases of different loop-pipe shapes were examined experimentally. The results by the developed tool showed good agreements with those by experiments.

Analysis on the Characteristics of a flat moving core type LOA (평판 가동철심형 LOA의 특성해석)

  • Jang, S.M.;Seo, J.H.;Kim, H.G.;Park, H.C.;Park, C.I.;Jeong, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.50-52
    • /
    • 1996
  • The exiting apparatus for rectilinear reciprocating motion has low efficiency because of various mechanical converting equipments from rotary motion. The LOA(Linear Oscillation Actuator) is the rectilinear reciprocating actuator. This paper shows the operating principle of bifiler winding LOA and the comparison the characteristics of thrust force of no tapered moving core type LOA with the tapered one. Through FEM analysis tapered LOA has the lower peak force and longer stroke than no tapered LOA.

  • PDF

Characteristic Analysis of Tubular Type Linear Oscillating Actuator According to Permanent Magnet Array (영구자석 배열에 따른 Tubular형 직선 왕복 엑추에이터의 특성해석)

  • Jang, S.M.;Choi, J.Y.;Lee, S.H.;Cho, S.K.;Yoo, D.J.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1048-1050
    • /
    • 2003
  • Recently, many linear motion generators and motors are rapidly finding applications that ranges from short stroke linear motion vibrators, such as dynamic con type loud speakers to stilting engine driven linear reciprocating alternators, compressors, textile machines etc. In this paper, we analyze the characteristics of tubular linear motor with Halbach and radial magnet array respectively. We already derived magnetic field solutions due to the PMs and to the currents and Motor thrust. On the basis of analytical field solutions, this paper deals with flux linkages and back emf. The results are validated extensively by comparison with finite element analyses. Then, this parer also presents thrust characteristics according to design parameters for each model.

  • PDF

Relationship between Oxidation and Wear of Ultra-High Molecular Weight Polyethylene for Total Joint Arthroplasty

  • Lee, Kwon-Yong
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.55-58
    • /
    • 2001
  • The most widely-used orthopaedic grade polymer bearing liner material, ultrahigh molecular weight polyethylene (UHMWPE), for the total joint arthroplasty degrades after gamma-irradiation sterilization through the progressive oxidation in a shelf and in vivo. Oxidative degradation makes UHMWPE brittle and leads to decrease in mechanical properties. In this study the relationship between post-gamma-irradiation aging time and wear of UHMWPE was investigated. Six retrieved polyethylene hip liners implanted for 3-16 years and then stored in air for 1.5-6.5 years until tests were used. Two types of pin-on-disk wear testing were conducted by the uni-directional repeat pass rotating and by the linear reciprocating stainless steel disks against stationary polyethylene pins under 4Mpa at 1Hz with bovine serum lubrication in ambient environment. Wear of retrieved polyethylene hip liners does not have direct correlation with in vivo or total aging time. Linear reciprocal sliding motion generated more remarkable wear than uni-directional repeat pass sliding motion. It indicates that kinematic motion affects very crucially on the wear of aged UHMWPE having brittle white band region.

  • PDF

The control method of LOA for a linear compressor without a stroke sensor (리니어 컴프레샤용 LOA의 스트로크 센서 없는 제어 방법)

  • Yoo Jae-Yoo;Lee Chel-Woong;Lee Jae-Choon;Whang Min-Kyu;Kim Jung-Chul
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.650-653
    • /
    • 2001
  • In recent the energy efficiency of a refrigerator has been restricted extremely. A compressor consumes a great portion of input power in a refrigerator. So it is necessary to develop a more efficient compressor in these days. The existing reciprocating compressor need to a crank shaft to convert the rotating motion to the straight motion and is not efficient. But the linear compressor using mechanic resonance is efficient but need a drive instead of a crank shaft to control a position accurately. However it is impossible to apply a stroke sensor practically because of the internal circumstance of compressor. In this paper, A new sensorless stroke control method using the current and voltage of linear compressor is proposed.

  • PDF

Development of Simulation Tool to predict dynamic motion of Linear Compressor (리니어 압축기의 동적거동예측 Simulation Tool 개발)

  • Jeon, Soo-Hong;Lee, Hyo-Jae;Jeong, Weui-Bong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1026-1030
    • /
    • 2007
  • A linear compressor used in a refrigerator has higher energy efficiency than a reciprocating compressor. But its vibration level is still severe than others. The vibration level of linear compressor at the frequency of 60Hz is dominant since it is the exciting frequency of a motor. Experimental approach to reduce the vibration needs much effort and long period. In this paper, simulation tool to predict the vibration of the shell of the linear compressor was developed. The piston, body and shell are assumed to be rigid, while the loop pipe is flexible. The results by the developed tool showed good agreements with those by experiments.

  • PDF