• Title/Summary/Keyword: Reciprocal Weibull Distribution

Search Result 4, Processing Time 2.339 seconds

An alternative approach to extreme value analysis for design purposes

  • Bardsley, Earl
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.201-201
    • /
    • 2016
  • The asymptotic extreme value distributions of maxima are a natural choice when designing against future extreme events like flood peaks or wave heights, given a stationary time series. The generalized extreme value distribution (GEV) is often utilised in this context because it is seen as a convenient single expression for extreme event analysis. However, the GEV has a drawback because the location of the distribution bound relative to the data is a discontinuous function of the GEV shape parameter. That is, for annual maxima approximated by the Gumbel distribution, the data is also consistent with a GEV distribution with an upper bound (no lower bound) or a GEV distribution with a lower bound (no upper bound). A more consistent single extreme value expression for design purposes is proposed as the Weibull distribution of smallest extremes, as applied to transformed annual maxima. The Weibull distribution limit holds here for sufficiently large sample sizes, irrespective of the extreme value domain of attraction applicable to the untransformed maxima. The Gumbel, Type 2, and Type 3 extreme value distributions thus become redundant, together with the GEV, because in reality there is only a single asymptotic extreme value distribution required for design purposes - the Weibull distribution of minima as applied to transformed maxima. An illustrative synthetic example is given showing transformed maxima from the normal distribution approaching the Weibull limit much faster than the untransformed sample maxima approach the normal distribution Gumbel limit. Some New Zealand examples are given with the Weibull distribution being applied to reciprocal transformations of annual flood maxima, where the untransformed maxima follow apparently different extreme value distributions.

  • PDF

On the Estimation in Regression Models with Multiplicative Errors

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.1
    • /
    • pp.193-198
    • /
    • 1999
  • The estimation of parameters in regression models with multiplicative errors is usually based on the gamma or log-normal likelihoods. Under reciprocal misspecification, we compare the small sample efficiencies of two sets of estimators via a Monte Carlo study. We further consider the case where the errors are a random sample from a Weibull distribution. We compute the asymptotic relative efficiency of quasi-likelihood estimators on the original scale to least squares estimators on the log-transformed scale and perform a Monte Carlo study to compare the small sample performances of quasi-likelihood and least squares estimators.

  • PDF

Analysis of Field Reliability Data with Supplementary Information on Degradation Data and Covariates (열화자료와 설명변수 정보를 고려한 사용현장 신뢰성 자료의 분석)

  • 서순근;하천수
    • Journal of Applied Reliability
    • /
    • v.2 no.2
    • /
    • pp.63-83
    • /
    • 2002
  • Degradation data can provide more reliability information than traditional failure-time data, especially products with few or no failures. This paper is concerned with a method of estimating lifetime distribution from field data with supplementary information on degradation data and covariates. When a distribution of degradation rate obtained by follow-up study for a portion of products that survive after-warranty follows a reciprocal-Weibull or lognormal distribution. A time-to-failure distribution of the product follows Weibull or lognormal distribution, respectively. A method of estimating lifetime parameters for this kind of data and their asymptotic properties are studied. Effects of after-warranty report probability, follow-up rate, and proportion of degradation data on pseudo maximum likelihood estimators of these parameters are investigated.

  • PDF

Statistical Analysis of Degradation Data under a Random Coefficient Rate Model (확률계수 열화율 모형하에서 열화자료의 통계적 분석)

  • Seo, Sun-Keun;Lee, Su-Jin;Cho, You-Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.3
    • /
    • pp.19-30
    • /
    • 2006
  • For highly reliable products, it is difficult to assess the lifetime of the products with traditional life tests. Accordingly, a recent approach is to observe the performance degradation of product during the test rather than regular failure time. This study compares performances of three methods(i.e. the approximation, analytical and numerical methods) to estimate the parameters and quantiles of the lifetime when the time-to-failure distribution follows Weibull and lognormal distributions under a random coefficient degradation rate model. Numerical experiments are also conducted to investigate the effects of model error such as measurements in a random coefficient model.