• Title/Summary/Keyword: Recharge altitude

Search Result 7, Processing Time 0.023 seconds

Delay Time Estimation of Recharge in the Hancheon Watershed, Jeju Island (제주도 한천유역의 함양 지체시간 산정)

  • Kim, Nam-Won;Na, Hanna;Chung, Il-Moon
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.605-613
    • /
    • 2014
  • In this work, the delay time for groundwater recharge was estimated by comparing simulated recharges by means of SWAT(Soil and Water Assessment Tool) model and WTF(Water Table Fluctuation) method. The delay time for groundwater recharge means that the time when the water from rainfall travelled through vadose zone just after getting out of soil zone bottom. As measuring this delay time is almost impossible, we used to compare the estimated values from modeling(SWAT) and analytic method(WTF). The test site is Hancheon watershed which has 8 groundwater measurement stations. The results show that the altitude has a linear relationship with the estimated delay time values. To validate these results, we conducted corelation analysis between transformed groundwater levels and observed ones. The results showed that computed groundwater levels have good corelation($R^2$=0.97, 0.87, respectively). The estimated delay time would be used for the groundwater behaviour characteristics in vadose zone. As recharge rates vary according to the height, the delay time is thought to be an import variable for the proper groundwater recharge estimation.

Empirical Formula of Delay Time for Groundwater Recharge in the Representative Watersheds, Jeju Island (제주 대표유역에 대한 함양지체시간의 경험식)

  • Kim, Nam Won;Na, Hanna;Chung, Il-Moon;Kim, Youn Jung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.743-752
    • /
    • 2014
  • Delay time for groundwater recharge means the travel time from the bottom of soil layer to groundwater through vadose zone after infiltration from rainfall. As it is difficult to measure delay time, we suggested an empirical formula which is derived by using linear regression between altitude and delay time. For the regression analysis, 4 major gauging watersheds were chosen (Hancheon, Kangjeongcheon, Oedocheon, Cheonmicheon) with 18 measured groundwater level stations. To verify this empirical formula, derived equation from linear reservoir theory was applied to compute delay time and to compare estimated amounts of groundwater recharge using both methods. The result showed good agreement. Furthermore, if derived empirical formula would be linked with SWAT model, the spatial time delay effect in the watershed could be reflected properly.

A Study on the Recharge Characteristics of Groundwater in the Jeju Samdasoo Watershed Using Stable Water Isotope Data (안정동위원소를 이용한 제주삼다수 유역의 지하수 함양 특성 연구)

  • Shin, Youngsung;Kim, Taehyeong;Moon, Suhyung;Yun, Seong-Taek;Moon, Dukchul;Han, Heejoo;Kang, Kyounggu
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.25-36
    • /
    • 2021
  • This study evaluated monthly, seasonal and altitudinal changes of oxygen and hydrogen isotope compositions of wet precipitation samples (n = 238) that were collected for last four years from 7 altitudes (from 265 to 1,500 m above sea level) in the Jeju Samdasoo watershed at the southeastern part of Jeju island, in order to examine the recharge characteristics of groundwater that is pumped out for the production of the Samdasoo drinking mineral water. Precipitation samples showed a clear seasonal change of O-H isotopic composition as follow, due to the different air masses and relative humidity: 𝛿D = 7.3𝛿18O + 11.3 (R2 = 0.76) in the wet season (June to September), while 𝛿D = 7.9𝛿18O + 9.5 (R2 = 0.91) in the dry season (October to May). In contrast, the stable isotope compositions of groundwater were nearly constant throughout the year and did not show a distinct monthly or seasonal change, implying the well-mixing of infiltrated water during and after its recharge. An altitudinal effect of the oxygen isotope compositions of precipitation was also remarkable with the decrease of -0.19‰ (R2 = 0.91) with the elevation increase by 100 m. Based on the observed altitudinal change, the minimum altitude of groundwater recharge was estimated as 1,200 m above the sea level in the Jeju Samdasoo watershed.

Sensitivity Analysis of Hydrogeologic Parameters by Groundwater Table Fluctuation Model in Jeju Island (지하수위 변동 해석모델을 이용한 제주지역의 수리지질 매개변수 민감도 분석)

  • Kim, Nam Won;Kim, Youn Jung;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1409-1420
    • /
    • 2014
  • In this work, we have carried out a sensitivity analysis of hydrogeologic parameters such as reaction factor and drainable pore space in groundwater table fluctuation model and have found characteristics of parameter distribution according to the altitude. We found that drainable pore space which is hydrogeologic parameter of aquifer didn't show any trend with altitude while reaction factor which is groundwater flow characteristic showed clear trend with altitude. To find a sensitivity of parameters, we compared RMSE of estimated groundwater recharges by using the mean value and linear relationship of parameters. As results, the linear equation derived for entire watersheds could be applied to estimate parameters for ungauged watershed. Furthermore, the features of parameter distribution can be used to predict hydrogeologic parameter in ungauged watersheds and it is expected that those features could be used for a basic data for groundwater modeling.

음성지역 지하수의 수리화학적 특성에 대한 심도, 모암 및 광화대의 영향

  • 정찬호;이병대;성익환;조병욱
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.492-494
    • /
    • 2004
  • The purpose of this study is to investigate the hydrochemical characteristics of groundwater in the Umsung area, and to elucidate the effect of host rock type, well depth and mineralization zone on the groundwater chemistry, We carried out chemical analysis, isotopic analysis, statistical analysis of Box-Whisker and trigging analysis for this study. The chemical and isotopic compositions of the groundwater is distinguished into two areas according to host rocks(Cretaceous sedimentary rocks and Jurassic granite) and recharge altitude, and is not greatly influenced by mineralization zone of the mines.

  • PDF

Environmental Isotope Characteristics of $CO_2$-rich Water in the Kangwon Province (강원도지역 탄산수의 환경동위원소적 특성)

  • 최현수;고용권;김천수;배대석;윤성택
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.491-504
    • /
    • 2000
  • Environmental isotope $^{18}O$, $^{2}H$, $^{3}H$,$^{13}C$, $^{34}S$and $^{87}Sr/^{86}Sr$) studies on ${CO_2}$-rich waters in the Kangwon Province were carried out to elucidate the origin, residence time, water-rock interaction and mixing process of their. ${\delta}^{18}O$ and ${\delta}D$ data indicate that ${CO_2}$-rich waters were derived from the local meteoric water. It also shows that each type of ${CO_2}$-rich water has distinct isotopic composition and Na-${HCO_3}$ type water (-10.8 to -12.1${\textperthousand}$, ${\delta}^{18}O$ ) is lighter than other type waters. These depleted isotopic values supposedly indicate that, considering the altitude effect of isotope in Korea, the recharge area of Na-${HCO_3}$ type water can be estimated to be relatively higher in elevation than those of Ca-${HCO_3}$ and Ca-Na-${HCO_3}$ type waters. Tritium contents close to zero are observed in the Na-${HCO_3}$ type water, confirming a long residence time and the possibility of a ${CO_2}$ inflow into the aquifer at great depth. These isotope data also show that the Ca-${HCO_3}$ type water has undergone mixing process with surface water during ascending at depth, whereas Na-${HCO_3}$ type water was less mixed with surface waters. The carbon isotope data (-8.8 to +0.8 ${\textperthousand}$ ${\delta}^{13}C$) indicate that dissolved carbon in the ${CO_2}$-rich waters was possibly derived from deep seated ${CO_2}$ gas. The high ${\delta}^{34}S$ values (up to 38.1${\textperthousand}$) of dissolved sulfates suggest that sulfate reduction by microbial activity had occurred at depth. Strontium isotopic data ($^{87}Sr/^{86}Sr$) of ${CO_2}$-rich waters indicate that the chemistry of the ${CO_2}$-rich waters is determined by water-rock (granite) interaction.

  • PDF

Effect of Well Depth, Host Rocks and Mineralization Zone on Hydrochemical Characteristics of Groundwater in the Umsung Area (음성지역 지하수의 수리화학적 특성에 대한 심도, 모암 및 광화대의 영향)

  • Jeong Chan Ho;Lee Byung Dae;Sung Ig hwan;Cho Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.469-485
    • /
    • 2004
  • The purpose of this study is to investigate the hydrochemical characteristics of groundwater in the Umsung area, and to elucidate the effect of host rock type, well depth and mineralization zone on the groundwater chemistry. The geology of the study area consists of Jurassic granite and Cretaceous sedimentary rocks, which are bounded by a fault. Most of shallow groundwaters exploited in the Jurassic granite area are used for agricultural purpose, whereas the deep groundwaters in the Cretaceous sedimentary rocks are used for a drinking water. The shallow groundwater shows weak acidic pH, the electrical conductivity ranging from $142\;to\;903\;{\mu}S/cm$, and the chemical type of $Ca-HCO_3\;to\;Ca-Cl(SO_4,\;NO_3)$. A few of shallow groundwaters are contaminated by nitrate, and show high concentration of Fe, Mn and Zn, that reflects the effect of a mineralization zone. The deep groundwater shows neutral to weak alkaline pH, higher electrical conductivity than that of shallow groundwater, and the chemical type of $Ca-HCO_3$. The seepage water from the abandoned mines does not have the characteristics such as acidic pH, high concentration of heavy metals and high sulfate content. The hydrogen and oxygen isotopes of groundwater indicates an altitude effect of the recharge area between deep groundwater and shallow groundwater. In conclusion, the chemical composition of groundwater complicately reflects the effects of their host rocks, well depth, agricultural activity and mineralization zone in the study area.