• Title/Summary/Keyword: Receptor of activated protein kinase C

Search Result 168, Processing Time 0.024 seconds

Facilitation of Glucose Uptake by Lupeol through the Activation of the PI3K/AKT and AMPK Dependent Pathways in 3T3-L1 Adipocytes (3T3-L1 지방세포에서 PI3K/AKT 및 AMPK 경로의 활성화를 통한 루페올의 포도당 흡수촉진 효과)

  • Lee, Hyun-Ah;Han, Ji-Sook
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.86-93
    • /
    • 2022
  • Lupeol is a type of pentacyclic triterpene and has been reported to have pharmacological activities against various diseases; however, the effect of lupeol on glucose absorption has not been elucidated yet. This study aimed to investigate the effect of lupeol on glucose uptake in 3T3-L1 adipocytes. Lupeol significantly facilitated glucose uptake by translocating glucose transporter type 4 (GLUT4) to the plasma membrane of the 3T3-L1 adipocytes, which was related to activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and 5 'adenosine monophosphate-activated protein kinase (AMPK) pathways. In the PI3K/AKT pathway, lupeol stimulates the phosphorylation of insulin receptor substrate 1 (IRS-1), which activates PI3K. Its activation by lupeol promotes the phosphorylation of AKT, but not the atypical protein kinase C isoforms ζ and λ. Lupeol also promoted the phosphorylation of AMPK. The activation of AMPK increased the expressions of the plasma membrane GLUT4 and the intracellular glucose uptake. The increase in the glucose uptake by lupeol was suppressed by wortmannin (PI3K inhibitor) and compound C (AMPK inhibitor) in the 3T3-L1 adipocytes. The results indicate that lupeol can facilitate glucose uptake by increasing insulin sensitivity through the stimulation of the expression of plasma membrane glucose transporter type 4 via the PI3K/AKT and AMPK pathways in the 3T3-L1 adipocytes.

Synergic induction of human periodontal ligament fibroblast cell death by nitric oxide and N-methyl-D-aspartic acid receptor antagonist

  • Seo, Tae-Gun;Cha, Se-Ho;Woo, Kyung-Mi;Park, Yun-Soo;Cho, Yun-Mi;Lee, Jeong-Soon;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Purpose: Nitric oxide (NO) has been known as an important regulator of osteoblasts and periodontal ligament cell activity. This study was performed to investigate the relationship between NO-mediated cell death of human periodontal ligament fibroblasts (PDLFs) and N-methyl-D-aspartic acid (NMDA) receptor antagonist (+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine hydrogen maleate (MK801). Methods: Human PDLFs were treated with various concentrations (0 to 4 mM) of sodium nitroprusside (SNP) with or without $200\;{\mu}M$ MK801 in culture media for 16 hours and the cell medium was then removed and replaced by fresh medium containing MTS reagent for cell proliferation assay. Western blot analysis was performed to investigate the effects of SNP on the expression of Bax, cytochrome c, and caspase-3 proteins. The differences for each value among the sample groups were compared using analysis of variance with 95% confidence intervals. Results: In the case of SNP treatment, as a NO donor, cell viability was significantly decreased in a concentration-dependent manner. In addition, a synergistic effect was shown when both SNP and NMDA receptor antagonist was added to the medium. SNP treated PDLFs exhibited a round shape in culture conditions and were dramatically reduced in cell number. SNP treatment also increased levels of apoptotic marker protein, such as Bax and cytochrome c, and reduced caspase-3 in PDLFs. Mitogen-activated protein kinase signaling was activated by treatment of SNP and NMDA receptor antagonist. Conclusions: These results suggest that excessive production of NO may induce apoptosis and that NMDA receptor may modulate NO-induced apoptosis in PDLFs.

Silibinin Inhibits Osteoclast Differentiation Mediated by TNF Family Members

  • Kim, Jung Ha;Kim, Kabsun;Jin, Hye Mi;Song, Insun;Youn, Bang Ung;Lee, Junwon;Kim, Nacksung
    • Molecules and Cells
    • /
    • v.28 no.3
    • /
    • pp.201-207
    • /
    • 2009
  • Silibinin is a polyphenolic flavonoid compound isolated from milk thistle (Silybum marianum), with known hepatoprotective, anticarcinogenic, and antioxidant effects. Herein, we show that silibinin inhibits receptor activator of $NF-{\kappa}B$ ligand (RANKL)-induced osteoclastogenesis from RAW264.7 cells as well as from bone marrow-derived monocyte/macrophage cells in a dose-dependent manner. Silibinin has no effect on the expression of RANKL or the soluble RANKL decoy receptor osteoprotegerin (OPG) in osteoblasts. However, we demonstrate that silibinin can block the activation of $NF-{\kappa}B$, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein (MAP) kinase, and extracellular signal-regulated kinase (ERK) in osteoclast precursors in response to RANKL. Furthermore, silibinin attenuates the induction of nuclear factor of activated T cells (NFAT) c1 and osteoclast-associated receptor (OSCAR) expression during RANKL-induced osteoclastogenesis. We demonstrate that silibinin can inhibit $TNF-{\alpha}$-induced osteoclastogenesis as well as the expression of NFATc1 and OSCAR. Taken together, our results indicate that silibinin has the potential to inhibit osteoclast formation by attenuating the downstream signaling cascades associated with RANKL and $TNF-{\alpha}$.

Epidermal Growth Factor Induces Vasoconstriction Through the Phosphatidylinositol 3-Kinase-Mediated Mitogen-Activated Protein Kinase Pathway in Hypertensive Rats

  • Kim, Jung-Hwan;Lee, Chang-Kwon;Park, Hyo-Jun;Kim, Hyo-Jin;So, Hyun-Ha;Lee, Keun-Sang;Lee, Hwan-Myung;Roh, Hui-Yul;Choi, Wahn-Soo;Park, Tae-Kyu;Kim, Bo-Kyung
    • Journal of Korean Physical Therapy Science
    • /
    • v.13 no.2
    • /
    • pp.137-145
    • /
    • 2006
  • We investigated whether increased contractile responsiveness to epidermal growth factor (EGF) is associated with altered activation of mitogen-activated protein kinase (MAPK) in the aortic smooth muscle of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. EGF induced contraction and MAPK activity in aortic smooth muscle strips, which were significantly increased in tissues from the DOCA-salt hypertensive rats compared with those from sham-operated rats. AG1478, PD98059, and LY294002, inhibitors of EGF receptor (EGFR) tyrosine kinase, MAPK/extracellular signal-regulated kinase (ERK) kinase, and phosphatidylinositol 3-kinase (PI3K), respectively, inhibited the contraction and the activity of ERK1/2 that were elevated by EGF. Y27632 and GF109203X, inhibitors of Rho kinase and protein kinase C, respectively, attenuated EGF-induced contraction, with no diminution of ERK1/2 activity. Although EGF also elevated the activity of EGFR tyrosine kinase in both sham-operated and DOCA-salt hypertensive rats, the expression and the magnitude of activation did not differ between strips. These results strongly suggest that EGF induces contraction by the activation of ERK1/2, which is regulated by the PI3K pathway in the aortic smooth muscle of DOCA-salt hypertensive rats.

  • PDF

Combined Treatment of Silymarin and Jakyakgamcho-tang Suppresses Hepatic Lipid Accumulation and Inflammation in C57BL/6 Mice (Silymarin과 작약감초탕 병용투여의 C57BL/6 마우스 간조직 지질축적 및 염증 억제효과)

  • Choi, Jeong Won;Cho, Su-Jung;Shin, Mi-rae;Park, Hae-Jin
    • The Korea Journal of Herbology
    • /
    • v.37 no.5
    • /
    • pp.17-26
    • /
    • 2022
  • Objective : The aim of the present study is to examine hepatic lipid-lowering and anti-inflammatory effects of silymarin combined with Jakyakgamcho-tang on non-alcoholic fatty liver disease in a high fat diet-induced obese mice model. Methods : C57BL/6 mice were divided into four dietary groups: (1) Normal, (2) Control (60% high-fat diet), (3) Control + silymarin 50 mg/kg/day (Silymarin), (4) Control + Silymarin 50 mg/kg/day + Jakyakgamcho-tang 100 mg/kg/day (SPG). After 12 weeks administration, mice were sacrificed and lipids and inflammation-related biomarkers were analyzed liver and plasma. Results : Silymarin and SPG treatments significantly lowered body and liver weights compared to the Control. Serumlipids (triglyceride (TG), total cholesterol) and pro-inflammatory cytokines (tumor necrosis factor alpha, interleukin 1𝛽, and IL-6) concentrations were significantly lowered in the Silymarin and SPG groups than the Control group. Silymarin and SPG treatments suppressed hepatic TG level and hepatic lipid droplets compared to the Control. Theses two treatments significantly increased hepatic kinase B1 and AMP-activated protein kinase protein levels, and significantly decreased hepatic key lipogenic enzymes (acetyl-CoA carboxylase, fatty acid synthase and stearyl coenzyme A desaturase 1) protein levels than the Control. SPG also significantly increased hepatic fatty acid oxidation-related protein (peroxisome proliferator-activated receptor alpha and uncoupling protein 2) levels than the Control. Conclusions: Silymarin and SPG suppressed hepatic lipid accumulation by regulating hepatic protein expression, and lowered blood pro-inflammatory cytokines concentrations though the synergic effect of silymarin and Jakyakgamchotang was not clear.

Ligand-Independent Activation of the Androgen Receptor by Insulin-Like Growth Factor-I and the Role of the MAPK Pathway in Skeletal Muscle Cells

  • Kim, Hye Jin;Lee, Won Jun
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.589-593
    • /
    • 2009
  • In this study, the roles of the p38 MAPK, ERK1/2 and JNK signaling pathway in IGF-I-induced AR induction and activation were examined. C2C12 cells were treated with IGF-I in the absence or presence of various inhibitors of p38 MAPK (SB203580), ERK1/2 (PD98059), and JNK (SP600125). Inhibition of the MAPK pathway with SB203580, PD98059, or SP600125 significantly decreased IGF-I-induced AR phosphorylation and total AR protein expression. IGF-I-induced nuclear fraction of total AR and phosphorylated AR were significantly inhibited by SB203580, PD98059, or SP600125. Furthermore, IGF-I-induced AR mRNA and skeletal ${\alpha}-actin$ mRNA were blocked by those inhibitors in dose-dependent manner. Confocal images showed that IGF-I-induced AR nuclear translocation from cytosol was significantly blocked by SB203580, PD98059, or SP600125, suggesting that the MAPK pathway regulates IGF-I-induced AR nuclear localization in skeletal muscle cells. The present results suggest that the MAPK pathways are required for the ligand-independent activation of AR by IGF-I in C2C12 skeletal muscle cells.

Buxus Microphylla var. Koreana Nakai Extract for the Treatment of Gastric Cancer

  • Lee, Hee Jung;Kim, Min Chul;Lim, Bora;Kim, Byung Joo
    • Journal of Pharmacopuncture
    • /
    • v.16 no.3
    • /
    • pp.39-45
    • /
    • 2013
  • Objectives: Buxus Microphylla var. Koreana Nakai Extract (BMKNE) is used as a folk remedy for malaria and veneral disease. In the present study, we investigated the effects of BMKNE in the growth and the survival of AGS cells, the most common human gastric adenocarcinoma cell lines. Methods: The AGS cells were treated with varying concentrations of BMKNE. Analyses of the sub G1 peak, the caspase-3 and -9 activities, and the mitochondrial depolarization were conducted to determine whether AGS cell death occured by apoptosis. Also, to identify the role of transient receptor potential melastatin (TRPM) 7 channels in AGS cell growth and survival, we used human embryonic kidney (HEK) 293 cells overexpressed with TRPM7 channels. Results: Experimental results showed that the sub G1 peak, the caspase-3 and -9 activities, and the mitochondrial depolarization were increased. Therefore, BMKNE was found to induce the apoptosis of these cells, and this apoptosis was inhibited by SB203580 (a p38 mitogen-activated protein kinase (MAPK) inhibitor), and by a c-jun NH2-terminal kinase (JNK) II inhibitor. Furthermore, BMKNE inhibited TRPM7 currents and TRPM7 channel over-expressions in HEK 293 cells, exacerbating BMKNE-induced cell death. Conclusions: These findings indicate that BMKNE inhibits the growth and the survival of gastric cancer cells due to a blockade of the TRPM7 channel's activity and MAPK signaling. Therefore, BMKNE is a potential drug for treatment of gastric cancer, and both the TRPM7 channel and MAPK signaling may play an important role in survival in gastric cancer cells.

Inhibitory Effects of Yongbu-tang on Osteoclast Differentiation and Bone Resorption (용부탕의 파골세포 분화 억제와 골 흡수 억제효과)

  • Lee, Jeong Ju;Jo, So Hyun;Park, Min Cheol;Jo, Eun Heui
    • Journal of Acupuncture Research
    • /
    • v.32 no.3
    • /
    • pp.27-40
    • /
    • 2015
  • Objectives : This study was performed to evaluate the effects of water extract of Cervi Parvum Cornu(CPC), Aconiti Lateralis Radix Preparata(ALR), and Yongbu-tang(YBT) on suppression of the receptor activator of nuclear factor kappa-B ligand(RANKL)-induced osteoclast differentiation and bone resorption. Methods : The effects of CPC, ALR, YBT extracts on osteoclast differentiation were determined by culture of bone marrow macrophage(BMM). The mRNA expression levels of the nuclear factor of activated T-cells cytoplasmic 1(NFATc1), c-Fos and tartrate-resistant acid phosphatase(TRAP) in BMMs were analyzed by reverse transcriptase polymerase chain reaction(RT-PCR). Similarly, the protein expression levels of NFATc1, c-Fos, mitogen-activated protein kinase(MAPK)s and ${\beta}$-actin in cell lysates were measured by western blotting. In addition, effects of CPC, ALR and YBT extracts were determined by means of Lipopolysaccharide(LPS)-induced bone-loss with mice. Results : CPC, ALR and YBT extracts showed remarkable inhibition on RANKL-induced osteoclast differentiation without cytotoxicity. CPC and ALR extracts significantly reduced the protein expression level of NFATc1. YBT extract significantly reduced the mRNA expression levels of c-Fos, NFATc1 and the protein expression levels of c-Fos, NFATc1, AKT, p38, c-Jun N-terminal kinase(JNK). Further, YBT extract suppressed degradation of$ I-{\kappa}B$. And ALR extract significantly restored the bone erosion by LPS treatment in mice. Conclusions : YBT extract showed more remarkable inhibition on osteoclast differentiation than CPC and ALR extracts in vitro. ALR extract showed remarkable inhibition on bone resorption in vivo. Thus, YBT extract can be a useful treatment for bone-loss diseases such as osteoporosis.

Tanshinone I, an Active Ingredient of Salvia miltiorrhiza, Inhibits Differentiation of 3T3-L1 Preadipocytes and Lipid Accumulation in Zebrafish

  • Kwon, Hyo-Shin;Jang, Byeong-Churl
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.2
    • /
    • pp.109-121
    • /
    • 2020
  • Objectives: Tanshinone I is a bioactive constituent in Salvia miltiorrhiza. At present, the anti-obesity effect and mechanism of tanshinone I are not fully understood. Here we investigated the effect of tanshinone I on lipid accumulation in 3T3-L1 preadipocytes and zebrafish. Methods: Lipid accumulation and triglyceride (TG) content in 3T3-L1 cells were determined by Oil Red O staining and AdipoRed assay, respectively. The expression and phosphorylation levels of adipogenic/lipogenic proteins in 3T3-L1 cells were evaluated by Western blotting. The messenger RNA (mRNA) expression levels of adipogenic/lipogenic markers and leptin in 3T3-L1 cells were measured by reverse transcription polymerase chain reaction (RT-PCR). Lipid accumulation in zebrafish was assessed by LipidGreen2 staining. Results: Tanshinone I at 5 μM largely blocked lipid accumulation and reduced TG content in differentiating 3T3-L1 cells. Furthermore, tanshinone I decreased the expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), and perilipin A but also the phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells. In addition, tanshinone I increased the phosphorylation of adenosine 3',5'-cyclic monophosphate (cAMP)-activated protein kinase (AMPK) while decreased the intracellular adenosine triphosphate (ATP) content with no change in the phosphorylation and expression of liver kinase-B1 in differentiating 3T3-L1 cells. Importantly, tanshinone I also reduced the extent of lipid deposit formation in developing zebrafish. Conclusions: These findings demonstrate that tanshinone I has strong anti-adipogenic effects on 3T3-L1 cells and reduces adiposity in zebrafish, and these anti-adipogenic effect in 3T3-L1 cells are mediated through control of C/EBP-α, PPAR-γ, STAT-3, FAS, ACC, perilipin A, and AMPK.

Cydonia oblonga Miller fruit extract exerts an anti-obesity effect in 3T3-L1 adipocytes by activating the AMPK signaling pathway

  • Hyun Sook Lee;Jae In Jung;Jung Soon Hwang;Myeong Oh Hwang;Eun Ji Kim
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1043-1055
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: The fruit of Cydonia oblonga Miller (COM) is used traditionally in Mediterranean region medicine to prevent or treat obesity, but its mechanism of action is still unclear. Beyond a demonstrated anti-obesity effect, the fruit was tested for the mechanism of adipogenesis in 3T3-L1 preadipocytes. MATERIALS/METHODS: 3T3-L1 preadipocytes were cultured for 8 days with COM fruit extract (COME) at different concentrations (0-600 ㎍/mL) with adipocyte differentiation medium. The cell viability was measured using an MTT assay; triglyceride (TG) was stained with Oil Red O. The expression levels of the adipogenesis-related genes and protein expression were analyzed by reverse transcription polymerase chain reaction and Western blotting, respectively. RESULTS: COME inhibited intracellular TG accumulation during adipogenesis. A COME treatment in 3T3-L1 cells induced upregulation of the adenosine monophosphate-activated protein kinase (AMPK)α phosphorylation and downregulation of the adipogenic transcription factors, such as sterol regulatory element-binding protein 1c, peroxisome proliferator-activated receptor γ, and CCAAT/enhancer binding protein α. The COME treatment reduced the mRNA expression of fatty acyl synthetase, adenosine triphosphate-citrate lyase, adipocyte protein 2, and lipoprotein lipase. It increased the mRNA expression of hormone-sensitive lipase and carnitine palmitoyltransferase I in 3T3-L1 cells. CONCLUSIONS: COME inhibits adipogenesis via the AMPK signaling pathways. COME may be used to prevent and treat obesity.