• Title/Summary/Keyword: Reception

Search Result 1,433, Processing Time 0.025 seconds

Guidelines for dental clinic infection prevention during COVID-19 pandemic (코로나 바이러스 대유행에 따른 치과 의료 관리 가이드라인)

  • Kim, Jin
    • Journal of Korean Academy of Dental Administration
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Dental settings have unique characteristics that warrant specific infection control considerations, including (1) prioritizing the most critical dental services and provide care in a way that minimizes harm to patients due to delayed care, or harm to personnel from potential exposure to persons infected with the COVID-19 disease, and (2) proactively communicate to both personnel and patients the need for them to stay at home if sick. For health care, an interim infection prevention and control recommendation (COVID-19) is recommended for patients suspected of having coronavirus or those whose status has been confirmed. SARS-CoV-2, which is the virus that causes COVID-19, is thought to be spread primarily between people who are in close contact with one another (within 6 feet) through respiratory droplets that are produced when an infected person coughs, sneezes, or talks. Airborne transmission from person-to-person over long distances is unlikely. However, COVID-19 is a new disease, and there remain uncertainties about its mode of spreads and the severity of illness it causes. The virus has been shown to persist in aerosols for several hours, and on some surfaces for days under laboratory conditions. COVID-19 may also be spread by people who are asymptomatic. The practice of dentistry involves the use of rotary dental and surgical instruments, such as handpieces or ultrasonic scalers, and air-water syringes. These instruments create a visible spray that can contain particle droplets of water, saliva, blood, microorganisms, and other debris. While KF 94 masks protect the mucous membranes of the mouth and nose from droplet spatter, they do not provide complete protection against the inhalation of airborne infectious agents. If the patient is afebrile (temperature <100.4°F)* and otherwise without symptoms consistent with COVID-19, then dental care may be provided using appropriate engineering and administrative controls, work practices, and infection control considerations. It is necessary to provide supplies for respiratory hygiene and cough etiquette, including alcohol-based hand rub (ABHR) with 60%~95% alcohol, tissues, and no-touch receptacles for disposal, at healthcare facility entrances, waiting rooms, and patient check-ins. There is also the need to install physical barriers (e.g., glass or plastic windows) in reception areas to limit close contact between triage personnel and potentially infectious patients. Ideally, dental treatment should be provided in individual rooms whenever possible, with a spacing of at least 6 feet between the patient chairs. Further, the use of easy-to-clean floor-to-ceiling barriers will enhance the effectiveness of portable HEPA air filtration systems. Before and after all patient contact, contact with potentially infectious material, and before putting on and after removing personal protective equipment, including gloves, hand hygiene after removal is particularly important to remove any pathogens that may have been transferred to the bare hands during the removal process. ABHR with 60~95% alcohol is to be used, or hands should be washed with soap and water for at least 20 s.

A study on the reliability and availability improvement of wireless communication in the LTE-R (철도통합무선망(LTE-R) 환경에서 무선통신 안정성과 가용성 향상을 위한 방안 연구)

  • Choi, Min-Suk;Oh, Sang-Chul;Lee, Sook-Jin;Yoon, Byung-Sik;Kim, Dong-Joon;Sung, Dong-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1172-1179
    • /
    • 2020
  • With the establishment of the railway integrated radio network (LTE-R) environment, radio-based train control transmission and reception and various forms of service are provided. The smooth delivery of these services requires improved performance in a highly reliable and available wireless environment. This paper measured the LTE-R radio communication environment to improve radio communication performance of railway integrated wireless network reliability and availability, analyzed the results, and established the wireless environment model. Based on the built-up model, we also proposed an improved radio-access algorithm to control trains for improved reliability, suggesting a way to improve stability for handover that occur during open-air operation, and proposed an algorithm for frequency auto-heating to improve availability. For simulation, data were collected from the Korea Rail Network Authority (Daejeon), Manjong-Gangneung KTX route, which can measure the actual data of LTE-R wireless environment, and the results of the simulation show performance improvement through algorithm.

Design and Implementation K-Band EWRG Transceiver for High-Resolution Rainfall Observation (고해상도 강수 관측을 위한 K-대역 전파강수계 송수신기 설계 및 구현)

  • Choi, Jeong-Ho;Lim, Sang-Hun;Park, Hyeong-Sam;Lee, Bae-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.646-654
    • /
    • 2020
  • This paper is to develop an electromagnetic wave-based sensor that can measure the spatial distribution of precipitation, and to a electromagnetic wave rain gauge (hereinafter, "EWRG") capable of simultaneously measuring rainfall, snowfall, and wind field, which are the core of heavy rain observation. Through this study, the LFM transmission and reception signals were theoretically analyzed. In addition, In order to develop a radar transceiver, LFM transceiver design and simulation were conducted. In this paper, we developed a K-BAND pulse-driven 6W SSPA(Solid State Power Amplifiers) transceiver using a small HMIC(Hybrid Microwave Integrated Circuit). It has more than 6W of output power and less than 5dB of receiving NF(Noise Figure) with short duty of 1% in high temperature environment of 65 degrees. The manufactured module emits LFM and Square Pulse waveform with the built-in waveform generator, and the receiver has more than 40dB of gain. The transceiver developed in this paper can be applied to the other small weather radar.

Design and Development of Modular Replaceable AI Server for Image Deep Learning in Social Robots on Edge Devices (엣지 디바이스인 소셜 로봇에서의 영상 딥러닝을 위한 모듈 교체형 인공지능 서버 설계 및 개발)

  • Kang, A-Reum;Oh, Hyun-Jeong;Kim, Do-Yun;Jeong, Gu-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.470-476
    • /
    • 2020
  • In this paper, we present the design of modular replaceable AI server for image deep learning that separates the server from the Edge Device so as to drive the AI block and the method of data transmission and reception. The modular replaceable AI server for image deep learning can reduce the dependency between social robots and edge devices where the robot's platform will be operated to improve drive stability. When a user requests a function from an AI server for interaction with a social robot, modular functions can be used to return only the results. Modular functions in AI servers can be easily maintained and changed by each module by the server manager. Compared to existing server systems, modular replaceable AI servers produce more efficient performance in terms of server maintenance and scale differences in the programs performed. Through this, more diverse image deep learning can be included in robot scenarios that allow human-robot interaction, and more efficient performance can be achieved when applied to AI servers for image deep learning in addition to robot platforms.

A Study on the Direction of Publicity and Technology Development of Public Service Media - Focusing on the cases of global public broadcasting (디지털 공영미디어의 공영성과 기술 발전 방향성 연구 - 해외 공영방송 사례를 중심으로)

  • Jung, Byunghee
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.402-414
    • /
    • 2022
  • Due to the convergence of broadcasting and telecommunication and the evolution into the media industry, viewers are adapting to the reception of content through various platforms and personal media. Accordingly, public broadcasting is seeking to change into public media that redefines public responsibility and establishes a role for a sustainable society. In particular, proving its value in the form of differentiated public services in an environment where public content is also provided by commercial services is necessary for members of society to prove the legitimacy of financial resources and services. In this paper, as the digital broadcasting era in the 2010s and the media industry was reorganized in 2020, changes in public services corresponding to the public responsibilities required of public broadcasters were analyzed through global public broadcasting cases. In particular, since the technical preparation of broadcasters and viewers is essential in the media environment, the technical direction of public services was mainly analyzed. The derived direction is a common direction applicable to all public broadcasters, including Korea. It is expected that the public responsibility and direction of technological development suggested in this paper will clarify the role of public media and help become differentiated services that contribute to life.

Dementia Patient Wandering Behavior and Anomaly Detection Technique through Biometric Authentication and Location-based in a Private Blockchain Environment (프라이빗 블록체인 환경에서 생체인증과 위치기반을 통한 치매환자 배회행동 및 이상징후 탐지 기법)

  • Han, Young-Ae;Kang, Hyeok;Lee, Keun-Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.5
    • /
    • pp.119-125
    • /
    • 2022
  • With the recent increase in dementia patients due to aging, measures to prevent their wandering behavior and disappearance are urgently needed. To solve this problem, various authentication methods and location detection techniques have been introduced, but the security problem of personal authentication and a system that can check indoor and outdoor overall was lacking. In order to solve this problem, various authentication methods and location detection techniques have been introduced, but it was difficult to find a system that can check the security problem of personal authentication and indoor/outdoor overall. In this study, we intend to propose a system that can identify personal authentication, basic health status, and overall location indoors and outdoors by using wristband-type wearable devices in a private blockchain environment. In this system, personal authentication uses ECG, which is difficult to forge and highly personally identifiable, Bluetooth beacon that is easy to use with low power, non-contact and automatic transmission and reception indoors, and DGPS that corrects the pseudorange error of GPS satellites outdoors. It is intended to detect wandering behavior and abnormal signs by locating the patient. Through this, it is intended to contribute to the prompt response and prevention of disappearance in case of wandering behavior and abnormal symptoms of dementia patients living at home or in nursing homes.

A low noise, wideband signal receiver for photoacoustic microscopy (광음향 현미경 영상을 위한 저잡음 광대역 수신 시스템)

  • Han, Wonkook;Moon, Ju-Young;Park, Sunghun;Chang, Jin Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.507-517
    • /
    • 2022
  • The PhotoAcoustic Microscopy (PAM) has been proved to be a useful tool for biological and medical applications due to its high spatial and contrast resolution. PAM is based on transmission of laser pulses and reception of PA signals. Since the strength of PA signals is generally low, not only are high-performance optical and acoustic modules required, but high-performance electronics for imaging are also particularly needed for high-quality PAM imaging. Most PAM systems are implemented with a combination of several pieces of equipment commercially available to receive, amplify, enhance, and digitize PA signals. To this end, PAM systems are inevitably bulky and not optimal because general purpose equipment is used. This paper reports a PA signal receiving system recently developed to attain the capability of improved Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) of PAM images; the main module of this system is a low noise, wideband signal receiver that consists of two low-noise amplifiers, two variable gain amplifiers, analog filters, an Analog to Digital Converter (ADC), and control logic. From phantom imaging experiments, it was found that the developed system can improve SNR by 6.7 dB and CNR by 3 dB, compared to a combination of several pieces of commercially available equipment.

Hollywood in Print -Movie Programmes of a Korean Theater in Ethnically Segregated Kyǒngsǒng in the 1920s and the Reception of Hollywood Prestige Pictures (활자와 이미지로 읽는 할리우드 -1920년대 조선극장의 영화관 프로그램과 미국 '특작'영화 경쟁)

  • Ahn, Sejung
    • Journal of Popular Narrative
    • /
    • v.27 no.1
    • /
    • pp.53-98
    • /
    • 2021
  • This paper examines the ways in which Hollywood feature films produced and widely circulated with the establishment of the studio system was consumed in the ethnically segregated Korean movie theaters in Kyǒngsǒng in the 1920s. Focusing on how those theaters appropriated what Hollywood represented, this paper has three objectives. First, from a historical and economic perspective, I will historicize the emergence of so-called prestige pictures and how movies became a branded product in that process. Second, I will also loot at how Chosǒn Theater, one of the earliest movie theaters in the Korean-resident area in Kyǒngsǒng who sought to be a prestigious movie palace actively exploited Hollywood brand, by foregrounding its Paramount connection, in particular. Lastly, through a close reading of weekly programmes and handbills, I will examine how these promotional print materials, as an intermediating medium, helped to supplement the audiences' viewing of Hollywood movies while creating loyal audiences.

Deep Learning Acoustic Non-line-of-Sight Object Detection (음향신호를 활용한 딥러닝 기반 비가시 영역 객체 탐지)

  • Ui-Hyeon Shin;Kwangsu Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.233-247
    • /
    • 2023
  • Recently, research on detecting objects in hidden spaces beyond the direct line-of-sight of observers has received attention. Most studies use optical equipment that utilizes the directional of light, but sound that has both diffraction and directional is also suitable for non-line-of-sight(NLOS) research. In this paper, we propose a novel method of detecting objects in non-line-of-sight (NLOS) areas using acoustic signals in the audible frequency range. We developed a deep learning model that extracts information from the NLOS area by inputting only acoustic signals and predicts the properties and location of hidden objects. Additionally, for the training and evaluation of the deep learning model, we collected data by varying the signal transmission and reception location for a total of 11 objects. We show that the deep learning model demonstrates outstanding performance in detecting objects in the NLOS area using acoustic signals. We observed that the performance decreases as the distance between the signal collection location and the reflecting wall, and the performance improves through the combination of signals collected from multiple locations. Finally, we propose the optimal conditions for detecting objects in the NLOS area using acoustic signals.

Optically transparent ultrasound transducers for combined ultrasound and photoacoustic imaging: A review (초음파-광음향 융합 영상을 위한 투명 초음파 변환기)

  • Shunghun Park;Jin Ho Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.441-451
    • /
    • 2023
  • Ultrasound transducers are an essential component of combined photoacoustic and ultrasound imaging systems and play an important role in image evaluation. However, ultrasound transducers are opaque; therefore, light must bypass the ultrasound transducer to reach the target point to produce a photoacoustic image. Providing different paths for the optical and acoustic signals results in a complicated system design, increasing the system volume. To overcome these problems, an optically Transparent Ultrasound Transducer (TUT) was developed. Unlike conventional opaque ultrasound transducers, optically TUT can be fabricated by a variety of manufacturing methods and they are suitable for use with specific piezoelectric elements and serve various purposes. In this study, a comparative analysis of the results of using Lithium Niobate (LNO), Lead Magnesium Niobate-Lead Titanate (PMN-PT), and Polyvinylidene Difluoride (PVDF), which are materials used in piezoelectric element-based TUT. LNO is a piezoelectric element widely used in TUT, and PMN-PT has been actively studied recently with a higher transmission and reception rate than LNO. Existing TUT have lower ultrasound resolution than photoacoustic resolution, but they have recently been manufacturing focused TUT with high ultrasound resolution using PVDF. A comparative analysis of the production results of these TUT was performed.