• Title/Summary/Keyword: Receiver sensitivity

Search Result 584, Processing Time 0.027 seconds

The Effect of Hounsfield Unit Value with Conventional Computed Tomography and Intraoperative Distraction on Postoperative Intervertebral Height Reduction in Patients Following Stand-Alone Anterior Cervical Discectomy and Fusion

  • Lee, Jun Seok;Son, Dong Wuk;Lee, Su Hun;Ki, Sung Soon;Lee, Sang Weon;Song, Geun Sung;Woo, Joon Bum;Kim, Young Ha
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.1
    • /
    • pp.96-106
    • /
    • 2022
  • Objective : The most common complication of anterior cervical discectomy and fusion (ACDF) is cage subsidence and maintenance of disc height affects postoperative clinical outcomes. We considered cage subsidence as an inappropriate indicator for evaluating preservation of disc height. Thus, this study aimed to consider patients with complications such as reduced total disc height compared to that before surgery and evaluate the relevance of several factors before ACDF. Methods : We retrospectively reviewed the medical records of 40 patients who underwent stand-alone single-level ACDF using a polyetheretherketone (PEEK) cage at our institution between January 2012 and December 2018. Our study population comprised 19 male and 21 female patients aged 24-70 years. The minimum follow-up period was 1 year. Twenty-seven patients had preoperative bone mineral density (BMD) data on dual-energy X-ray absorptiometry. Clinical parameters included sex, age, body mass index, smoking history, and prior medical history. Radiologic parameters included the C2-7 cobb angle, segmental angle, sagittal vertical axis, disc height, and total intervertebral height (TIH) at the preoperative and postoperative periods. Cage decrement was defined as the reduction in TIH at the 6-month follow-up compared to preoperative TIH. To evaluate the bone quality, Hounsfield unit (HU) value was calculated in the axial and sagittal images of conventional computed tomography. Results : Lumbar BMD values and cervical HU values were significantly correlated (r=0.733, p<0.001). We divided the patients into two groups based on cage decrement, and 47.5% of the total patients were regarded as cage decrement. There were statistically significant differences in the parameters of measuring the HU value of the vertebra and intraoperative distraction between the two groups. Using these identified factors, we performed a receiver operating characteristic (ROC) curve analysis. Based on the ROC curve, the cut-off point was 530 at the HU value of the upper cortical and cancellous vertebrae (p=0.014; area under the curve [AUC], 0.727; sensitivity, 94.7%; specificity, 42.9%) and 22.41 at intraoperative distraction (p=0.017; AUC, 0.722; sensitivity, 85.7%; specificity, 57.9%). Using this value, we converted these parameters into a bifurcated variable and assessed the multinomial regression analysis to evaluate the risk factors for cage decrement in ACDF. Intraoperative distraction and HU value of the upper vertebral body were independent factors of postoperative subsidence. Conclusion : Insufficient intraoperative distraction and low HU value showed a strong relationship with postoperative intervertebral height reduction following single stand-alone PEEK cage ACDF.

Detection of Proximal Caries Lesions with Deep Learning Algorithm (심층학습 알고리즘을 활용한 인접면 우식 탐지)

  • Hyuntae, Kim;Ji-Soo, Song;Teo Jeon, Shin;Hong-Keun, Hyun;Jung-Wook, Kim;Ki-Taeg, Jang;Young-Jae, Kim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.2
    • /
    • pp.131-139
    • /
    • 2022
  • This study aimed to evaluate the effectiveness of deep convolutional neural networks (CNNs) for diagnosis of interproximal caries in pediatric intraoral radiographs. A total of 500 intraoral radiographic images of first and second primary molars were used for the study. A CNN model (Resnet 50) was applied for the detection of proximal caries. The diagnostic accuracy, sensitivity, specificity, receiver operating characteristic (ROC) curve, and area under ROC curve (AUC) were calculated on the test dataset. The diagnostic accuracy was 0.84, sensitivity was 0.74, and specificity was 0.94. The trained CNN algorithm achieved AUC of 0.86. The diagnostic CNN model for pediatric intraoral radiographs showed good performance with high accuracy. Deep learning can assist dentists in diagnosis of proximal caries lesions in pediatric intraoral radiographs.

Percentile-Based Analysis of Non-Gaussian Diffusion Parameters for Improved Glioma Grading

  • Karaman, M. Muge;Zhou, Christopher Y.;Zhang, Jiaxuan;Zhong, Zheng;Wang, Kezhou;Zhu, Wenzhen
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.104-116
    • /
    • 2022
  • The purpose of this study is to systematically determine an optimal percentile cut-off in histogram analysis for calculating the mean parameters obtained from a non-Gaussian continuous-time random-walk (CTRW) diffusion model for differentiating individual glioma grades. This retrospective study included 90 patients with histopathologically proven gliomas (42 grade II, 19 grade III, and 29 grade IV). We performed diffusion-weighted imaging using 17 b-values (0-4000 s/mm2) at 3T, and analyzed the images with the CTRW model to produce an anomalous diffusion coefficient (Dm) along with temporal (𝛼) and spatial (𝛽) diffusion heterogeneity parameters. Given the tumor ROIs, we created a histogram of each parameter; computed the P-values (using a Student's t-test) for the statistical differences in the mean Dm, 𝛼, or 𝛽 for differentiating grade II vs. grade III gliomas and grade III vs. grade IV gliomas at different percentiles (1% to 100%); and selected the highest percentile with P < 0.05 as the optimal percentile. We used the mean parameter values calculated from the optimal percentile cut-offs to do a receiver operating characteristic (ROC) analysis based on individual parameters or their combinations. We compared the results with those obtained by averaging data over the entire region of interest (i.e., 100th percentile). We found the optimal percentiles for Dm, 𝛼, and 𝛽 to be 68%, 75%, and 100% for differentiating grade II vs. III and 58%, 19%, and 100% for differentiating grade III vs. IV gliomas, respectively. The optimal percentile cut-offs outperformed the entire-ROI-based analysis in sensitivity (0.761 vs. 0.690), specificity (0.578 vs. 0.526), accuracy (0.704 vs. 0.639), and AUC (0.671 vs. 0.599) for grade II vs. III differentiations and in sensitivity (0.789 vs. 0.578) and AUC (0.637 vs. 0.620) for grade III vs. IV differentiations, respectively. Percentile-based histogram analysis, coupled with the multi-parametric approach enabled by the CTRW diffusion model using high b-values, can improve glioma grading.

CT Fractional Flow Reserve for the Diagnosis of Myocardial Bridging-Related Ischemia: A Study Using Dynamic CT Myocardial Perfusion Imaging as a Reference Standard

  • Yarong Yu;Lihua Yu;Xu Dai;Jiayin Zhang
    • Korean Journal of Radiology
    • /
    • v.22 no.12
    • /
    • pp.1964-1973
    • /
    • 2021
  • Objective: To investigate the diagnostic performance of CT fractional flow reserve (CT-FFR) for myocardial bridging-related ischemia using dynamic CT myocardial perfusion imaging (CT-MPI) as a reference standard. Materials and Methods: Dynamic CT-MPI and coronary CT angiography (CCTA) data obtained from 498 symptomatic patients were retrospectively reviewed. Seventy-five patients (mean age ± standard deviation, 62.7 ± 13.2 years; 48 males) who showed myocardial bridging in the left anterior descending artery without concomitant obstructive stenosis on the imaging were included. The change in CT-FFR across myocardial bridging (ΔCT-FFR, defined as the difference in CT-FFR values between the proximal and distal ends of the myocardial bridging) in different cardiac phases, as well as other anatomical parameters, were measured to evaluate their performance for diagnosing myocardial bridging-related myocardial ischemia using dynamic CT-MPI as the reference standard (myocardial blood flow < 100 mL/100 mL/min or myocardial blood flow ratio ≤ 0.8). Results: ΔCT-FFRsystolic (ΔCT-FFR calculated in the best systolic phase) was higher in patients with vs. without myocardial bridging-related myocardial ischemia (median [interquartile range], 0.12 [0.08-0.17] vs. 0.04 [0.01-0.07], p < 0.001), while CT-FFRsystolic (CT-FFR distal to the myocardial bridging calculated in the best systolic phase) was lower (0.85 [0.81-0.89] vs. 0.91 [0.88-0.96], p = 0.043). In contrast, ΔCT-FFRdiastolic (ΔCT-FFR calculated in the best diastolic phase) and CT-FFRdiastolic (CT-FFR distal to the myocardial bridging calculated in the best diastolic phase) did not differ significantly. Receiver operating characteristic curve analysis showed that ΔCT-FFRsystolic had largest area under the curve (0.822; 95% confidence interval, 0.717-0.901) for identifying myocardial bridging-related ischemia. ΔCT-FFRsystolic had the highest sensitivity (91.7%) and negative predictive value (NPV) (97.8%). ΔCT-FFRdiastolic had the highest specificity (85.7%) for diagnosing myocardial bridging-related ischemia. The positive predictive values of all CT-related parameters were low. Conclusion: ΔCT-FFRsystolic reliably excluded myocardial bridging-related ischemia with high sensitivity and NPV. Myocardial bridging showing positive CT-FFR results requires further evaluation.

Differentiation between Clear Cell Sarcoma of the Kidney and Wilms' Tumor with CT

  • Choeum Kang;Hyun Joo Shin;Haesung Yoon;Jung Woo Han;Chuhl Joo Lyu;Mi-Jung Lee
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1185-1193
    • /
    • 2021
  • Objective: Clear cell sarcoma of the kidney (CCSK) is the second-most common but extremely rare primary renal malignancy in children after Wilms' tumor. The aims of this study were to evaluate the imaging features that could distinguish between CCSK and Wilms' tumor and to assess the features with diagnostic value for identifying CCSK. Materials and Methods: We reviewed the initial contrast-enhanced abdominal-pelvic CT scans of children with CCSK and Wilms' tumor between 2010 to 2019. Fifty-eight children (32 males and 26 females; age, 0.3-10 years), 7 with CCSK, and 51 with Wilms' tumor, were included. The maximum tumor diameter, presence of engorged perinephric vessels, maximum density of the tumor (Tmax) of the enhancing solid portion, paraspinal muscle, contralateral renal vein density, and density ratios (Tmax/muscle and Tmax/vein) were analyzed on the renal parenchymal phase of contrast-enhanced CT. Fisher's exact tests and Mann-Whitney U tests were conducted to analyze the categorical and continuous variables, respectively. Logistic regression and receiver operating characteristic curve analyses were also performed. Results: The age, sex, and tumor diameter did not differ between the two groups. Engorged perinephric vessels were more common in patients in the CCSK group (71% [5/7] vs. 16% [8/51], p = 0.005). Tmax (median, 148.0 vs. 111.0 Hounsfield unit, p = 0.004), Tmax/muscle (median, 2.64 vs. 1.67, p = 0.002), and Tmax/vein (median, 0.94 vs. 0.59, p = 0.002) were higher in the CCSK compared to the Wilms' group. Multiple logistic regression revealed that engorged vessels (odds ratio 13.615; 95% confidence interval [CI], 1.770-104.730) and Tmax/muscle (odds ratio 5.881; 95% CI, 1.337-25.871) were significant predictors of CCSK. The cutoff values of Tmax/muscle (86% sensitivity, 77% specificity) and Tmax/vein (71% sensitivity, 86% specificity) for the diagnosis of CCSK were 1.97 and 0.76, respectively. Conclusion: Perinephric vessel engorgement and greater tumor enhancement (Tmax/muscle > 1.97 or Tmax/vein > 0.76) are helpful for differentiating between CCSK and Wilms' tumor in children aged below 10 years.

Automated Detection and Segmentation of Bone Metastases on Spine MRI Using U-Net: A Multicenter Study

  • Dong Hyun Kim;Jiwoon Seo;Ji Hyun Lee;Eun-Tae Jeon;DongYoung Jeong;Hee Dong Chae;Eugene Lee;Ji Hee Kang;Yoon-Hee Choi;Hyo Jin Kim;Jee Won Chai
    • Korean Journal of Radiology
    • /
    • v.25 no.4
    • /
    • pp.363-373
    • /
    • 2024
  • Objective: To develop and evaluate a deep learning model for automated segmentation and detection of bone metastasis on spinal MRI. Materials and Methods: We included whole spine MRI scans of adult patients with bone metastasis: 662 MRI series from 302 patients (63.5 ± 11.5 years; male:female, 151:151) from three study centers obtained between January 2015 and August 2021 for training and internal testing (random split into 536 and 126 series, respectively) and 49 MRI series from 20 patients (65.9 ± 11.5 years; male:female, 11:9) from another center obtained between January 2018 and August 2020 for external testing. Three sagittal MRI sequences, including non-contrast T1-weighted image (T1), contrast-enhanced T1-weighted Dixon fat-only image (FO), and contrast-enhanced fat-suppressed T1-weighted image (CE), were used. Seven models trained using the 2D and 3D U-Nets were developed with different combinations (T1, FO, CE, T1 + FO, T1 + CE, FO + CE, and T1 + FO + CE). The segmentation performance was evaluated using Dice coefficient, pixel-wise recall, and pixel-wise precision. The detection performance was analyzed using per-lesion sensitivity and a free-response receiver operating characteristic curve. The performance of the model was compared with that of five radiologists using the external test set. Results: The 2D U-Net T1 + CE model exhibited superior segmentation performance in the external test compared to the other models, with a Dice coefficient of 0.699 and pixel-wise recall of 0.653. The T1 + CE model achieved per-lesion sensitivities of 0.828 (497/600) and 0.857 (150/175) for metastases in the internal and external tests, respectively. The radiologists demonstrated a mean per-lesion sensitivity of 0.746 and a mean per-lesion positive predictive value of 0.701 in the external test. Conclusion: The deep learning models proposed for automated segmentation and detection of bone metastases on spinal MRI demonstrated high diagnostic performance.

Pre- and Immediate Post-Kasai Portoenterostomy Shear Wave Elastography for Predicting Hepatic Fibrosis and Native Liver Outcomes in Patients With Biliary Atresia

  • Haesung Yoon;Kyong Ihn;Jisoo Kim;Hyun Ji Lim;Sowon Park;Seok Joo Han;Kyunghwa Han;Hong Koh;Mi-Jung Lee
    • Korean Journal of Radiology
    • /
    • v.24 no.5
    • /
    • pp.465-475
    • /
    • 2023
  • Objective: To evaluate the feasibility of ultrasound shear wave elastography (SWE) for predicting hepatic fibrosis and native liver outcomes in patients with biliary atresia. Materials and Methods: This prospective study included 33 consecutive patients with biliary atresia (median age, 8 weeks [interquartile range, 6-10 weeks]; male:female ratio, 15:18) from Severance Children's Hospital between May 2019 and February 2022. Preoperative (within 1 week from surgery) and immediate postoperative (on postoperative days [PODs] 3, 5, and 7) ultrasonographic findings were obtained and analyzed, including the SWE of the liver and spleen. Hepatic fibrosis, according to the METAVIR score at the time of Kasai portoenterostomy and native liver outcomes during postsurgical follow-up, were compared and correlated with imaging and laboratory findings. Poor outcomes were defined as intractable cholangitis or liver transplantation. The diagnostic performance of SWE in predicting METAVIR F3-F4 and poor hepatic outcomes was analyzed using receiver operating characteristic (ROC) analyses. Results: All patients were analyzed without exclusion. Perioperative advanced hepatic fibrosis (F3-F4) was associated with older age and higher preoperative direct bilirubin and SWE values in the liver and spleen. Preoperative liver SWE showed a ROC area of 0.806 and 63.6% (7/11) sensitivity and 86.4% (19/22) specificity at a cutoff of 17.5 kPa for diagnosing F3-F4. The poor outcome group included five patients with intractable cholangitis and three undergoing liver transplantation who showed high postoperative liver SWE values. Liver SWE on PODs 3-7 showed ROC areas of 0.783-0.891 for predicting poor outcomes, and a cutoff value of 10.3 kPa for SWE on POD 3 had 100% (8/8) sensitivity and 73.9% (17/23) specificity. Conclusion: Preoperative liver SWE can predict advanced hepatic fibrosis, and immediate postoperative liver SWE can predict poor native liver outcomes in patients with biliary atresia.

Qualitative and Quantitative Magnetic Resonance Imaging Phenotypes May Predict CDKN2A/B Homozygous Deletion Status in Isocitrate Dehydrogenase-Mutant Astrocytomas: A Multicenter Study

  • Yae Won Park;Ki Sung Park;Ji Eun Park;Sung Soo Ahn;Inho Park;Ho Sung Kim;Jong Hee Chang;Seung-Koo Lee;Se Hoon Kim
    • Korean Journal of Radiology
    • /
    • v.24 no.2
    • /
    • pp.133-144
    • /
    • 2023
  • Objective: Cyclin-dependent kinase inhibitor (CDKN)2A/B homozygous deletion is a key molecular marker of isocitrate dehydrogenase (IDH)-mutant astrocytomas in the 2021 World Health Organization. We aimed to investigate whether qualitative and quantitative MRI parameters can predict CDKN2A/B homozygous deletion status in IDH-mutant astrocytomas. Materials and Methods: Preoperative MRI data of 88 patients (mean age ± standard deviation, 42.0 ± 11.9 years; 40 females and 48 males) with IDH-mutant astrocytomas (76 without and 12 with CDKN2A/B homozygous deletion) from two institutions were included. A qualitative imaging assessment was performed. Mean apparent diffusion coefficient (ADC), 5th percentile of ADC, mean normalized cerebral blood volume (nCBV), and 95th percentile of nCBV were assessed via automatic tumor segmentation. Logistic regression was performed to determine the factors associated with CDKN2A/B homozygous deletion in all 88 patients and a subgroup of 47 patients with histological grades 3 and 4. The discrimination performance of the logistic regression models was evaluated using the area under the receiver operating characteristic curve (AUC). Results: In multivariable analysis of all patients, infiltrative pattern (odds ratio [OR] = 4.25, p = 0.034), maximal diameter (OR = 1.07, p = 0.013), and 95th percentile of nCBV (OR = 1.34, p = 0.049) were independent predictors of CDKN2A/B homozygous deletion. The AUC, accuracy, sensitivity, and specificity of the corresponding model were 0.83 (95% confidence interval [CI], 0.72-0.91), 90.4%, 83.3%, and 75.0%, respectively. On multivariable analysis of the subgroup with histological grades 3 and 4, infiltrative pattern (OR = 10.39, p = 0.012) and 95th percentile of nCBV (OR = 1.24, p = 0.047) were independent predictors of CDKN2A/B homozygous deletion, with an AUC accuracy, sensitivity, and specificity of the corresponding model of 0.76 (95% CI, 0.60-0.88), 87.8%, 80.0%, and 58.1%, respectively. Conclusion: The presence of an infiltrative pattern, larger maximal diameter, and higher 95th percentile of the nCBV may be useful MRI biomarkers for CDKN2A/B homozygous deletion in IDH-mutant astrocytomas.

Improving the Performance of Radiologists Using Artificial Intelligence-Based Detection Support Software for Mammography: A Multi-Reader Study

  • Jeong Hoon Lee;Ki Hwan Kim;Eun Hye Lee;Jong Seok Ahn;Jung Kyu Ryu;Young Mi Park;Gi Won Shin;Young Joong Kim;Hye Young Choi
    • Korean Journal of Radiology
    • /
    • v.23 no.5
    • /
    • pp.505-516
    • /
    • 2022
  • Objective: To evaluate whether artificial intelligence (AI) for detecting breast cancer on mammography can improve the performance and time efficiency of radiologists reading mammograms. Materials and Methods: A commercial deep learning-based software for mammography was validated using external data collected from 200 patients, 100 each with and without breast cancer (40 with benign lesions and 60 without lesions) from one hospital. Ten readers, including five breast specialist radiologists (BSRs) and five general radiologists (GRs), assessed all mammography images using a seven-point scale to rate the likelihood of malignancy in two sessions, with and without the aid of the AI-based software, and the reading time was automatically recorded using a web-based reporting system. Two reading sessions were conducted with a two-month washout period in between. Differences in the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, and reading time between reading with and without AI were analyzed, accounting for data clustering by readers when indicated. Results: The AUROC of the AI alone, BSR (average across five readers), and GR (average across five readers) groups was 0.915 (95% confidence interval, 0.876-0.954), 0.813 (0.756-0.870), and 0.684 (0.616-0.752), respectively. With AI assistance, the AUROC significantly increased to 0.884 (0.840-0.928) and 0.833 (0.779-0.887) in the BSR and GR groups, respectively (p = 0.007 and p < 0.001, respectively). Sensitivity was improved by AI assistance in both groups (74.6% vs. 88.6% in BSR, p < 0.001; 52.1% vs. 79.4% in GR, p < 0.001), but the specificity did not differ significantly (66.6% vs. 66.4% in BSR, p = 0.238; 70.8% vs. 70.0% in GR, p = 0.689). The average reading time pooled across readers was significantly decreased by AI assistance for BSRs (82.73 vs. 73.04 seconds, p < 0.001) but increased in GRs (35.44 vs. 42.52 seconds, p < 0.001). Conclusion: AI-based software improved the performance of radiologists regardless of their experience and affected the reading time.

Comparison Between Contrast-Enhanced Computed Tomography and Contrast-Enhanced Magnetic Resonance Imaging With Magnetic Resonance Cholangiopancreatography for Resectability Assessment in Extrahepatic Cholangiocarcinoma

  • Jeongin Yoo;Jeong Min Lee;Hyo-Jin Kang;Jae Seok Bae;Sun Kyung Jeon;Jeong Hee Yoon
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.983-995
    • /
    • 2023
  • Objective: To compare the diagnostic performance and interobserver agreement between contrast-enhanced computed tomography (CECT) and contrast-enhanced magnetic resonance imaging (CE-MRI) with magnetic resonance cholangiopancreatography (MRCP) for evaluating the resectability in patients with extrahepatic cholangiocarcinoma (eCCA). Materials and Methods: This retrospective study included treatment-naïve patients with pathologically confirmed eCCA, who underwent both CECT and CE-MRI with MRCP using extracellular contrast media between January 2015 and December 2020. Among the 214 patients (146 males; mean age ± standard deviation, 68 ± 9 years) included, 121 (56.5%) had perihilar cholangiocarcinoma. R0 resection was achieved in 108 of the 153 (70.6%) patients who underwent curative-intent surgery. Four fellowship-trained radiologists independently reviewed the findings of both CECT and CE-MRI with MRCP to assess the local tumor extent and distant metastasis for determining resectability. The pooled area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of CECT and CE-MRI with MRCP were compared using clinical, surgical, and pathological findings as reference standards. The interobserver agreement of resectability was evaluated using Fleiss kappa (κ). Results: No significant differences were observed between CECT and CE-MRI with MRCP in the pooled AUC (0.753 vs. 0.767), sensitivity (84.7% [366/432] vs. 90.3% [390/432]), and specificity (52.6% [223/424] vs. 51.4% [218/424]) (P > 0.05 for all). The AUC for determining resectability was higher when CECT and CE-MRI with MRCP were reviewed together than when CECT was reviewed alone in patients with discrepancies between the imaging modalities or with indeterminate resectability (0.798 [0.754-0.841] vs. 0.753 [0.697-0.808], P = 0.014). The interobserver agreement for overall resectability was fair for both CECT (κ = 0.323) and CE-MRI with MRCP (κ = 0.320), without a significant difference (P = 0.884). Conclusion: CECT and CE-MRI with MRCP showed no significant differences in the diagnostic performance and interobserver agreement in determining the resectability in patients with eCCA.