• Title/Summary/Keyword: Received SNR

Search Result 222, Processing Time 0.021 seconds

Evaluation of the usefulness of Images according to Reconstruction Techniques in Pediatric Chest CT (소아 흉부 CT 검사에서 재구성 기법에 따른 영상의 유용성 평가)

  • Gu Kim;Jong Hyeok Kwak;Seung-Jae Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.285-295
    • /
    • 2023
  • With the development of technology, efforts to reduce the exposure dose received by patients in CT scans are continuing with the development of new reconstruction techniques. Recently, deep learning reconstruction techniques have been developed to overcome the limitations of repetitive reconstruction techniques. This study aims to evaluate the usefulness of images according to reconstruction techniques in pediatric chest CT images. Patient study conducted a study on 85 pediatric patients who underwent chest CT scan at P-Hospital in Gyeongsangnam-do from January 1, 2021 to December 31, 2022. The phantom used in the Phantom Study is the Pediatrics Whole Body Phantom PBU-70. After the test, the images were reconstructed with FBP, ASIR-V (50%) and DLIR (TF-Medium, High), and the images were evaluated by obtaining SNR and CNR values by setting ROI of the same size. As a result, TF-H of deep learning reconstruction techniques had the lowest noise value compared to ASIR-V (50%) and TF-M in all experiments, and SNR and CNR had the highest values. In pediatric chest CT scans, TF images with deep learning reconstruction techniques were less noisy than ASiR-V images with adaptive statistical iterative reconstruction techniques, CNR and SNR were higher, and the quality of images was improved compared to conventional reconstruction techniques.

Study of New Approach of Performance Analysis for OADF Relay Systems over Rayleigh Fading channels (레일리 페이딩 채널에서의 OADF 릴레이 시스템에 대한 새로운 성능분석 기법에 관한 연구)

  • Ko, Kyun-Byoung;Seo, Jeong-Tae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.188-193
    • /
    • 2011
  • In this letter, we have derived another exact performance analysis for the OADF(opportunistic adaptive decode-and-forward) relay systems over Rayleigh fading channels. Based on error-events at relay nodes, the received instantaneous SNR(signal-to-noise ratio) is presented and its PDF(probability density function) is expressed as a more tractable form in which the number of summations and the length of each summation are specified. Then, exact average error rate, outage probability, and average channel capacity are obtained as general forms. Simulation results are finally presented to validate that the proposed analytical expressions can be a unified frame work covering all Rayleigh fading channel conditions. Furthermore, it is confirmed that OADF schemes can outperform the other schemes on the average error rate, outage probability, and average channel capacity.

Unproved AMC-MIMO Multiplexing Systems Using Selection Transmit Diversities (선택적 전송다이버시티를 사용한 개선된 AMC-MIMO 다중화시스템)

  • Kang, Min-goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.652-657
    • /
    • 2003
  • In this paper, Adaptive Modulation and Coding (AMC) is combined with Multiple Input Multiple Output (MIMO) multiplexing to improve the throughput performance of AMC. In addition, a system that adopts Selection Transmit Diversity (STD) in the AMC-MIMO multiplexing system is proposed. The received SNR is improved by adopting STD techniques. And it increases probability of selecting MCS (Modulation and Coding Scheme) level that supports higher data rate. This leads to an increased throughput of the AMC-MIMO system. STD in our simulation selects 2 transmission antennas from 4 antennas and AMC-MIMO multiplexing process operates with the selected antennas. The computer simulation is performed in flat Rayleigh fading channel. The results show that the proposed system achieves a gain of 1Mbps over the AMC-MIMO multiplexing system with the same number of antennas at 15dB SNR.

Bit Error Rate Improvement Scheme for Transmitted Reference UWB Systems (Transmitted Reference UWB 시스템을 위한 비트오율 향상 기법)

  • Kim, Jae-Woon;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.540-547
    • /
    • 2009
  • In this paper, we propose a transceiver structure that can effectively improve BER(Bit Error Rate) performance for TR-UWB (Transmitted Reference Ultra Wide Band) systems based on impulse radio. Unlike coherent UWB systems that are too complex for practical implementation while having good BER performances, the complexity of the TR-UWB systems is quite low since they transmit data with the corresponding reference signals and demodulate the data through correlation using these received signals. However, the BER performance in the conventional TR-UWB systems is affected by SNR (Signal-to-Noise Ratio) of the reference templates used in the correlator. To this end, we propose a receiver structure that can effectively improve the BER performance by increasing the SNR of reference templates. Simulation results reveal that the proposed scheme achieves significant BER improvement as compared to the conventional TR-UWB systems.

Adaptive Modulation and Coding of MIMO in Next Generation Mobile Systems (차세대 MIMO 이동통신에서 적응변조시스템의 성능분석)

  • Kang Sung-Jin;Jang Tae-Won;You Young-Whan;Whang In-Tae;Kang Min-Goo;Kang Chang-Eon
    • Journal of Internet Computing and Services
    • /
    • v.4 no.5
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, we combine AMC (Adaptive Modulation and Coding) with MIMO (Multiple Input Multiple Output) multiplexing to improve the throughput performance of AMC in Next Generation Communication Mobile Systems. In addition, we propose a system that adopts STD (Selection Transmit Diversity) in the combined system. The received SNR (Signal to Noise Ratio) is improved by adopting STD techniques and an improved SNR increases a probability of selecting MCS (Modulation and Coding Scheme) level that supports higher data rate. The computer simulation is performed in flat Rayleigh fading channel. The results show that higher throughput is achieved by AMC-TD schemes. AMC-STTD scheme shows about 250kbps increase in throughput. And AMC-STD with 2 transmit antennas achieves about 420 kbps throughput improvement over the conventional AMC at 9dB SNR.

  • PDF

Digitization Impact on the Spaceborne Synthetic Aperture Radar Digital Receiver Analysis (위성탑재 영상레이다 디지털 수신기에서의 양자화 영향성 분석)

  • Lim, Sungjae;Lee, Hyonik;Sung, Jinbong;Kim, Seyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.933-940
    • /
    • 2021
  • The space-borne SAR(Synthetic Aperture Radar) system radiates the microwave signal and receives the backscattered signal. The received signal is converted to digital at the Digital Receiver, which is implemented at the end of the SAR sensor receiving chain. The converted signal is formated after signal processing such as filtering and data compression. Two quantization are conducted in the Digital Receiver. One quantization is an analog to digital conversion at ADC(Analog-Digital Converter). Another quantization is the BAQ(Block Adaptive Quantization) for data compression. The quantization process is a conversion from a continuous or higher bit precision to a discrete or lower bit precision. As a result, a quantization noise is inevitably occurred. In this paper, the impact of two quantization processes are analyzed in a view of SNR degradation.

Classification of Radio Signals Using Wavelet Transform Based CNN (웨이블릿 변환 기반 CNN을 활용한 무선 신호 분류)

  • Song, Minsuk;Lim, Jaesung;Lee, Minwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1222-1230
    • /
    • 2022
  • As the number of signal sources with low detectability by using various modulation techniques increases, research to classify signal modulation methods is steadily progressing. Recently, a Convolutional Neural Network (CNN) deep learning technique using FFT as a preprocessing process has been proposed to improve the performance of received signal classification in signal interference or noise environments. However, due to the characteristics of the FFT in which the window is fixed, it is not possible to accurately classify the change over time of the detection signal. Therefore, in this paper, we propose a CNN model that has high resolution in the time domain and frequency domain and uses wavelet transform as a preprocessing process that can express various types of signals simultaneously in time and frequency domains. It has been demonstrated that the proposed wavelet transform method through simulation shows superior performance regardless of the SNR change in terms of accuracy and learning speed compared to the FFT transform method, and shows a greater difference, especially when the SNR is low.

Range Estimating Performance Evaluation of the Underwater Broadband Source by Array Invariant (Array Invariant를 이용한 수중 광대역 음원의 거리 추정성능 분석)

  • Kim Se-Young;Chun Seung-Yong;Kim Boo-Il;Kim Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.305-311
    • /
    • 2006
  • In this paper the performance of a array invariant method is evaluated for source-range estimation in horizontally stratified shallow water ocean waveguide. The method has advantage of little computationally effort over existing source-localization methods. such as matched field processing or the waveguide invariant and array gain is fully exploited. And. no knowledge of the environment is required except that the received field should not be dominated by purely interference This simple and instantaneous method is applied to simulated acoustic propagation filed for testing range estimation performance. The result of range estimation according to the SNR for the underwater impulsive source with broadband spectrum is demonstrated. The spatial smoothing method is applied to suppress the effect of mutipath propagation by high frequency signal. The result of performance test for range estimation shows that the error rate is within 20% at the SNR above 10dB.

BS-PLC(Both Side-Packet Loss Concealment) for CELP Coder (CELP 부호화기를 위한 양방향 패킷 손실 은닉 알고리즘)

  • Lee In-Sung;Hwang Jeong-Joon;Jeong Gyu-Hyeok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.127-134
    • /
    • 2005
  • Lost packet robustness is an most important quality measure for voice over IP networks(VoIP). Recovery of the lost packet from the received information is crucial to realize this robustness. So, this paper proposes the lost packet recovery method from the received information for real-time communication for CELP coder. The proposed BS-PLC (Both Side Packet Loss Concealment) based WSOLA(Waveform Shift OverLab Add) allow the lost packet to be recovered from both the 'previous' and 'next' good packet as the LP parameter and the excitation signal are respectively recovered. The burst of packet loss is modeled by Gilbert model. The proposed scheme is applied to G.729 most used in VoIP and is evaluated through the SNR(signal to noise) and the MOS(Mean Opinion Score) test. As a simulation result, The proposed scheme provide 0.3 higher in Mean Opinion Score and 2 dB higher in terms of SNR than an error concealment procedure in the decoder of G.729 at $20\%$ average packet loss rate.

Performance Analysis of the Adaptive Coding System Based on Received SNR over a Rayleigh Fading Channel (레일레이 페이딩 채널에서 수신신호의 신호대잡음비에 근거한 적응부호화 시스템의 성능 분석)

  • 허성호;이재홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7B
    • /
    • pp.1270-1281
    • /
    • 2000
  • 본 논문에서는 수신신호의신호대잡음비를 이용하여 작동되는 적응부호화 시스템을 레일레이 페이딩 채널 환경에서 분석한다. 분석에서는 레일레이 페이딩 채널을 수신신호의 신호대잡음비를 K개의 구간으로 나누어서 유한 상태 마르코프 채널로 모델링한다. 채널 상태를 예측하는 과정에서 발생하는 오류확률을 고려하여 적응부호화 시스템의 평균 BER과 throughput이 계산된다. 본 논문에서 제안한 분석 방법을 이용하여 천공 길쌈부호를 이용한는 적응부호화 시스템의 성능을 분석한 결과가 예제로 보여진다.

  • PDF