• Title/Summary/Keyword: Recall and Precision

Search Result 724, Processing Time 0.028 seconds

딥 러닝 기반의 영상분할 알고리즘을 이용한 의료영상 3차원 시각화에 관한 연구 (Three-Dimensional Visualization of Medical Image using Image Segmentation Algorithm based on Deep Learning)

  • 임상헌;김영재;김광기
    • 한국멀티미디어학회논문지
    • /
    • 제23권3호
    • /
    • pp.468-475
    • /
    • 2020
  • In this paper, we proposed a three-dimensional visualization system for medical images in augmented reality based on deep learning. In the proposed system, the artificial neural network model performed fully automatic segmentation of the region of lung and pulmonary nodule from chest CT images. After applying the three-dimensional volume rendering method to the segmented images, it was visualized in augmented reality devices. As a result of the experiment, when nodules were present in the region of lung, it could be easily distinguished with the naked eye. Also, the location and shape of the lesions were intuitively confirmed. The evaluation was accomplished by comparing automated segmentation results of the test dataset to the manual segmented image. Through the evaluation of the segmentation model, we obtained the region of lung DSC (Dice Similarity Coefficient) of 98.77%, precision of 98.45%, recall of 99.10%. And the region of pulmonary nodule DSC of 91.88%, precision of 93.05%, recall of 90.94%. If this proposed system will be applied in medical fields such as medical practice and medical education, it is expected that it can contribute to custom organ modeling, lesion analysis, and surgical education and training of patients.

칼라특징공간별 SLIC기반 슈퍼픽셀의 특성비교 (A Comparison of Superpixel Characteristics based on SLIC(Simple Linear Iterative Clustering) for Color Feature Spaces)

  • 이정환
    • 디지털산업정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.151-160
    • /
    • 2014
  • In this paper, a comparison of superpixel characteristics based on SLIC(simple linear iterative clustering) for several color feature spaces is presented. Computer vision applications have come to rely increasingly on superpixels in recent years. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. A superpixel is consist of pixels with similar features such as luminance, color, textures etc. Thus superpixels are more efficient than pixels in case of large scale image processing. Generally superpixel characteristics are described by uniformity, boundary precision and recall, compactness. However previous methods only generate superpixels a special color space but lack researches on superpixel characteristics. Therefore we present superpixel characteristics based on SLIC as known popular. In this paper, Lab, Luv, LCH, HSV, YIQ and RGB color feature spaces are used. Uniformity, compactness, boundary precision and recall are measured for comparing characteristics of superpixel. For computer simulation, Berkeley image database(BSD300) is used and Lab color space is superior to the others by the experimental results.

복잡한 영상 내의 문자영역 추출을 위한 텍스춰와 연결성분 방법의 결합 (Hybrid Approach of Texture and Connected Component Methods for Text Extraction in Complex Images)

  • 정기철
    • 대한전자공학회논문지SP
    • /
    • 제41권6호
    • /
    • pp.175-186
    • /
    • 2004
  • 본 논문은 복잡한 컬러 영상에서의 문자 추출을 위한 텍스춰와 연결성분 방법의 결합된 방법을 제안한다. 자동 학습 방법으로 구축된 다층 신경망(multilayer perceptron)은 부트스트랩 학습 방법을 사용함으로써 별도의 특징값 추출 단계 없이 다양한 환경의 입력 영상에 대한 검출률(recall rate)을 향상시키며, 검출률을 향상함으로써 발생되는 정확도(precision rate) 저하 문제는, NMF(Non-negative matrix factorization)를 이용한 연결 성분 방법을 사용함으로써 극복한다. 문자의 존재 비율이 낮은 입력영상에 대하여 CAMShift 알고리즘을 이용한 영역 마킹 방법을 사용함으로써, 두 방법을 결합함으로써 야기되는 속도 저하 문제의 해결을 시도하였다. 이와 같이 텍스춰와 연결성분 방법을 결합함으로써 강건하고 효율적인 시스템을 구성할 수 있었다.

협업필터링에서 포괄적 성능평가 모델 (A Comprehensive Performance Evaluation in Collaborative Filtering)

  • 유석종
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권4호
    • /
    • pp.83-90
    • /
    • 2012
  • 대규모의 상품을 다루는 전자상거래 시스템에서 개인화된 추천은 필수적인 기능이 되고 있다. 대표적 추천 알고리즘인 협업필터링은 내용기반 추천에 비하여 뛰어난 추천성능을 제공해 주고 있으나, 희박성, 신규 아이템 문제(Cold-start), 확장성 등의 근본적인 한계를 갖고 있다. 본 연구에서는 추가적으로 협업필터링이 목표 대상자에 따라 비일관된 예측 능력의 차이를 보이는 추천 성능의 편차 문제를 제기하고자 한다. 추천성능의 편차는 기존의 Mean Absolute Error(MAE)에 의해서는 측정되기 어려우며 또한 정확도, 재현율 지표와도 독립적으로 평가되고 있다. 협업알고리즘의 정확한 성능평가를 위해서 본 연구에서는 MAE, MAE 편차, 정확도, 재현율을 포괄적으로 평가할 수 있는 확장 성능평가모델을 제안하고 이를 클러스터링 기반 협업필터링에 적용하여 성능을 비교 분석한다.

히스토그램 인터섹션과 오토코릴로그램을 이용한 내용기반 영상검색 시스템 (Content Based Image Retrieval System using Histogram Intersection and Autocorrelogram)

  • 송석진;김효성;이희봉;남기곤
    • 융합신호처리학회논문지
    • /
    • 제3권1호
    • /
    • pp.1-7
    • /
    • 2002
  • 본 논문에서는 사용자가 질의영상을 선택할 때 영상전체 뿐만 아니라 영상내의 다양한 물체에 대해 질의를 원하는 물체영역만을 간단히 선택, 추출하여 그와 유사한 물체를 영상 데이터베이스 내에서 검색할 수 있는 내용기반 영상검색 시스템을 구현하였다. 질의영상으로부터 개선된 HSV변환을 통해 히스토그램을 구한 뒤 질의영상의 대표색상을 이용한 컬러 히스토그램 인터섹션방법으로 신속하게 1차 유사도 측정을 하여 후보영상들을 검색한다. 그리고 밴디드 컬러 오토코릴로그램을 이용한 2차 유사도 측정을 수행하여 최종 검색된 영상을 구하였는데 각각의 단점을 보완할 수 있는 2개의 검색방법들을 결합함으로써 소환성(recall) 및 정확성(precision)을 개선하였다. 또한 영상데이터베이스내의 영상들을 특성 라이브러리내에 자통 색인화하여 이를 통해 빠른 영상검색이 가능하였다.

  • PDF

클러스터와 온톨로지 정보를 이용한 웹 서비스 매칭 알고리즘 (Web Service Matching Algorithm using Cluster and Ontology Information)

  • 이용주
    • 인터넷정보학회논문지
    • /
    • 제11권1호
    • /
    • pp.59-69
    • /
    • 2010
  • 웹 서비스들의 수가 급격하게 증가함에 따라 사용자가 적합한 웹 서비스를 찾는 것은 매우 중요한 문제로 대두되고 있다. 그러나 전통적인 키워드 탐색 방법은 다음의 두 가지 이유 때문에 문제가 있다: (1) 웹 서비스에 대한 의미적인 정보들을 활용하지 못한다. (2) 사용자의 요구사항을 정확하게 표현하지 못한다. 이러한 키워드 기반 탐색 방법의 한계를 극복하기 위해 본 논문에서는 하나의 새로운 구문 분석 및 온톨로지 학습 방법을 제안한다. 구문 분석 방법은 키워드를 일반화하여 검색 범위를 넓혀주고, 온톨로지 학습 방법은 상관관계를 표현하여 깊이 있는 탐색을 유도한다. 이러한 두 방법을 결합함으로써 재현율과 정확률 둘 다 향상 시킬 수 있는 기법이 될 수 있다. 제안된 방법은 508개의 웹 서비스 집합에 대한 실험을 수행하여 그 성능의 우수함을 보인다.

다중 축 슬라이싱 및 3 차원 재구성을 통한 갈비뼈 세그멘테이션 (Rib Segmentation via Biaxial Slicing and 3D Reconstruction)

  • 김현성;변규린;고성현;범정현;리덕타이;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.611-614
    • /
    • 2023
  • 갈비뼈 병변 진단 과정은 방사선 전문의가 CT 스캐너를 통해 생성된 2 차원 CT 이미지들을 해석하며 진행된다. 병변의 위치를 파악하고 정확한 진단을 내리기 위해 수백장의 2차원 CT 이미지들이 세밀하게 검토되며 갈비뼈를 분류한다. 본 연구는 이런 노동 집약적 작업의 문제점을 개선시키기 위해 Biaxial Rib Segmentation(BARS)을 제안한다. BARS 는 흉부 CT 볼륨의 관상면과 수평면으로 구성된 2 차원 이미지들을 U-Net 모델에 학습한다. 모델이 산출한 세그멘테이션 마스크들의 조합은 서로 다른 평면의 공간 정보를 보완하며 3 차원 갈비뼈 볼륨을 재건한다. BARS 의 성능은 DSC, Recall, Precision 지표를 사용해 평가하며, DSC 90.29%, Recall 89.74%, Precision 90.72%를 보인다. 향후에는 이를 기반으로 순차적 갈비뼈 레이블링 연구를 진행할 계획이다.

영상 형태 특징을 이용한 내용 기반 검색 시스템 (Content-based Retrieval System using Image Shape Features)

  • 황병곤;정성호;이상열
    • 한국산업정보학회논문지
    • /
    • 제6권1호
    • /
    • pp.33-38
    • /
    • 2001
  • 본 논문에서는 영상의 형태 특징을 이용한 영상 검색 시스템을 제안한다. 형태특징을 얻기 위해서 먼저 체인코드를 이용하여 경계선 추출을 추출하였다. 형태특징으로 객체의 경계선과 무게중심까지의 합, 표준편차 그리고 객체의 장축과 단축 비율 등을 추출하였다. 이러한 형태특징 정보를 이용하여 데이터 베이스에 저장된 영상과 질의 영상을 비교하여 유사도 순위에 따라 후보 영상들을 검색하였다. 본 실험의 결과 크기, 회전 이동 등의 변화에 둔감하였다. 약 170개의 폐곡선을 이루는 영상에 대한 검색 실험을 통하여 모양 정보에 대한 정확도를 측정하였다. 실험 결과 평균 Recall/Precision이 0.72/0.83를 보임으로써 제안된 방법이 유용함을 보였다.

  • PDF

MPEG 압축된 비디오의 자동 분할 기법 (Automatic Parsing of MPEG-Compressed Video)

  • 김가현;문영식
    • 한국정보처리학회논문지
    • /
    • 제6권4호
    • /
    • pp.868-876
    • /
    • 1999
  • 본 논문에서는 MPEG으로 압축된 비디오(MPEG-compressed video)를 대상으로 내용기반 색인(content-based indexing)에 기초가 될 동영상 자도 d분할에 관한 효과적인 방법을 제안한다. 제안하는 방법은 MPEG 시퀀스의Ⅰ(Intra), P(Predictive), B(bidirectional) 픽쳐 구성에 구애받지 않고 장면 전환점(scene change)을 검출해 낸다. 컷(cut) 검출을 위해서는 Ⅰ픽쳐의 dc 계수와 P, B 픽쳐의 매크로 블록 참조 특성을 이용하여 차이 측도(difference measure)를 설정한다. 그리고 점진적인 (gradual)장면 전환에서는 p, B 픽쳐의 참조 블록 비율을 이용하여 정확하게 장면 전환 지점을 검출한다. 이때 MPEG 시퀀스를 완전히 복원하지 않고 필요한 데이터만을 추출해 내어 전체 데이터 처리 과정을 좀 더 효율적으로 구성한다. 차이 척도의 성능과 검출 결과는 정확도(precision)와 완전추출도(recall)를 기준으로 비교분석하고, 제안한 방법을 다양한 MPEG 시퀀스에 적용시켜 검출 결과와 수행 시간 측면에서 그 효율성을 확인하였다.

  • PDF

가버 필터에 기반한 관심 객체 검출 (Object of Interest Extraction Using Gabor Filters)

  • 김성영
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권2호
    • /
    • pp.87-94
    • /
    • 2008
  • 본 논문에서는 칼라 영상으로부터 관심 객체를 효과적으로 추출할 수 있는 방법을 제안한다. 본 논문에서 제안한 방법은 추출할 객체에 대한사전 지식이 필요 없으며 단순한 배경뿐만 아니라 복잡한 배경에서도 영상에 포함된 관심 객체를 추출하는 것이 가능하도록 한다. 이를 위해 가버 필터 사전을 사용하여 객체의 대략적인 형상을 포함하는 가버 영상을 생성한다. 이를 기반으로 객체 추출에 필요한 특징 정보의 추출 기준이 되는 관심 창(attention window)의 초기 위치를 설정한다. 객체 추출 단계는 기존 연구에서 제안한 방법을 일부 수정하여 적용한다. 제안된 방법의 추출 성능을 평가하기 위해 제안된 방법으로 추출된 결과를 수작업으로 추출된 객체와 비교하여 Precision, Recall 및 F-measure를 계산한다. 이를 통해 제안된 방법의 성능을 확인하였다. 또한 기존 방법과의 추출 결과 비교를 통해 제안된 방법의 우수성을 검증하였다.

  • PDF