In this paper, we proposed a three-dimensional visualization system for medical images in augmented reality based on deep learning. In the proposed system, the artificial neural network model performed fully automatic segmentation of the region of lung and pulmonary nodule from chest CT images. After applying the three-dimensional volume rendering method to the segmented images, it was visualized in augmented reality devices. As a result of the experiment, when nodules were present in the region of lung, it could be easily distinguished with the naked eye. Also, the location and shape of the lesions were intuitively confirmed. The evaluation was accomplished by comparing automated segmentation results of the test dataset to the manual segmented image. Through the evaluation of the segmentation model, we obtained the region of lung DSC (Dice Similarity Coefficient) of 98.77%, precision of 98.45%, recall of 99.10%. And the region of pulmonary nodule DSC of 91.88%, precision of 93.05%, recall of 90.94%. If this proposed system will be applied in medical fields such as medical practice and medical education, it is expected that it can contribute to custom organ modeling, lesion analysis, and surgical education and training of patients.
In this paper, a comparison of superpixel characteristics based on SLIC(simple linear iterative clustering) for several color feature spaces is presented. Computer vision applications have come to rely increasingly on superpixels in recent years. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. A superpixel is consist of pixels with similar features such as luminance, color, textures etc. Thus superpixels are more efficient than pixels in case of large scale image processing. Generally superpixel characteristics are described by uniformity, boundary precision and recall, compactness. However previous methods only generate superpixels a special color space but lack researches on superpixel characteristics. Therefore we present superpixel characteristics based on SLIC as known popular. In this paper, Lab, Luv, LCH, HSV, YIQ and RGB color feature spaces are used. Uniformity, compactness, boundary precision and recall are measured for comparing characteristics of superpixel. For computer simulation, Berkeley image database(BSD300) is used and Lab color space is superior to the others by the experimental results.
본 논문은 복잡한 컬러 영상에서의 문자 추출을 위한 텍스춰와 연결성분 방법의 결합된 방법을 제안한다. 자동 학습 방법으로 구축된 다층 신경망(multilayer perceptron)은 부트스트랩 학습 방법을 사용함으로써 별도의 특징값 추출 단계 없이 다양한 환경의 입력 영상에 대한 검출률(recall rate)을 향상시키며, 검출률을 향상함으로써 발생되는 정확도(precision rate) 저하 문제는, NMF(Non-negative matrix factorization)를 이용한 연결 성분 방법을 사용함으로써 극복한다. 문자의 존재 비율이 낮은 입력영상에 대하여 CAMShift 알고리즘을 이용한 영역 마킹 방법을 사용함으로써, 두 방법을 결합함으로써 야기되는 속도 저하 문제의 해결을 시도하였다. 이와 같이 텍스춰와 연결성분 방법을 결합함으로써 강건하고 효율적인 시스템을 구성할 수 있었다.
대규모의 상품을 다루는 전자상거래 시스템에서 개인화된 추천은 필수적인 기능이 되고 있다. 대표적 추천 알고리즘인 협업필터링은 내용기반 추천에 비하여 뛰어난 추천성능을 제공해 주고 있으나, 희박성, 신규 아이템 문제(Cold-start), 확장성 등의 근본적인 한계를 갖고 있다. 본 연구에서는 추가적으로 협업필터링이 목표 대상자에 따라 비일관된 예측 능력의 차이를 보이는 추천 성능의 편차 문제를 제기하고자 한다. 추천성능의 편차는 기존의 Mean Absolute Error(MAE)에 의해서는 측정되기 어려우며 또한 정확도, 재현율 지표와도 독립적으로 평가되고 있다. 협업알고리즘의 정확한 성능평가를 위해서 본 연구에서는 MAE, MAE 편차, 정확도, 재현율을 포괄적으로 평가할 수 있는 확장 성능평가모델을 제안하고 이를 클러스터링 기반 협업필터링에 적용하여 성능을 비교 분석한다.
본 논문에서는 사용자가 질의영상을 선택할 때 영상전체 뿐만 아니라 영상내의 다양한 물체에 대해 질의를 원하는 물체영역만을 간단히 선택, 추출하여 그와 유사한 물체를 영상 데이터베이스 내에서 검색할 수 있는 내용기반 영상검색 시스템을 구현하였다. 질의영상으로부터 개선된 HSV변환을 통해 히스토그램을 구한 뒤 질의영상의 대표색상을 이용한 컬러 히스토그램 인터섹션방법으로 신속하게 1차 유사도 측정을 하여 후보영상들을 검색한다. 그리고 밴디드 컬러 오토코릴로그램을 이용한 2차 유사도 측정을 수행하여 최종 검색된 영상을 구하였는데 각각의 단점을 보완할 수 있는 2개의 검색방법들을 결합함으로써 소환성(recall) 및 정확성(precision)을 개선하였다. 또한 영상데이터베이스내의 영상들을 특성 라이브러리내에 자통 색인화하여 이를 통해 빠른 영상검색이 가능하였다.
웹 서비스들의 수가 급격하게 증가함에 따라 사용자가 적합한 웹 서비스를 찾는 것은 매우 중요한 문제로 대두되고 있다. 그러나 전통적인 키워드 탐색 방법은 다음의 두 가지 이유 때문에 문제가 있다: (1) 웹 서비스에 대한 의미적인 정보들을 활용하지 못한다. (2) 사용자의 요구사항을 정확하게 표현하지 못한다. 이러한 키워드 기반 탐색 방법의 한계를 극복하기 위해 본 논문에서는 하나의 새로운 구문 분석 및 온톨로지 학습 방법을 제안한다. 구문 분석 방법은 키워드를 일반화하여 검색 범위를 넓혀주고, 온톨로지 학습 방법은 상관관계를 표현하여 깊이 있는 탐색을 유도한다. 이러한 두 방법을 결합함으로써 재현율과 정확률 둘 다 향상 시킬 수 있는 기법이 될 수 있다. 제안된 방법은 508개의 웹 서비스 집합에 대한 실험을 수행하여 그 성능의 우수함을 보인다.
갈비뼈 병변 진단 과정은 방사선 전문의가 CT 스캐너를 통해 생성된 2 차원 CT 이미지들을 해석하며 진행된다. 병변의 위치를 파악하고 정확한 진단을 내리기 위해 수백장의 2차원 CT 이미지들이 세밀하게 검토되며 갈비뼈를 분류한다. 본 연구는 이런 노동 집약적 작업의 문제점을 개선시키기 위해 Biaxial Rib Segmentation(BARS)을 제안한다. BARS 는 흉부 CT 볼륨의 관상면과 수평면으로 구성된 2 차원 이미지들을 U-Net 모델에 학습한다. 모델이 산출한 세그멘테이션 마스크들의 조합은 서로 다른 평면의 공간 정보를 보완하며 3 차원 갈비뼈 볼륨을 재건한다. BARS 의 성능은 DSC, Recall, Precision 지표를 사용해 평가하며, DSC 90.29%, Recall 89.74%, Precision 90.72%를 보인다. 향후에는 이를 기반으로 순차적 갈비뼈 레이블링 연구를 진행할 계획이다.
본 논문에서는 영상의 형태 특징을 이용한 영상 검색 시스템을 제안한다. 형태특징을 얻기 위해서 먼저 체인코드를 이용하여 경계선 추출을 추출하였다. 형태특징으로 객체의 경계선과 무게중심까지의 합, 표준편차 그리고 객체의 장축과 단축 비율 등을 추출하였다. 이러한 형태특징 정보를 이용하여 데이터 베이스에 저장된 영상과 질의 영상을 비교하여 유사도 순위에 따라 후보 영상들을 검색하였다. 본 실험의 결과 크기, 회전 이동 등의 변화에 둔감하였다. 약 170개의 폐곡선을 이루는 영상에 대한 검색 실험을 통하여 모양 정보에 대한 정확도를 측정하였다. 실험 결과 평균 Recall/Precision이 0.72/0.83를 보임으로써 제안된 방법이 유용함을 보였다.
본 논문에서는 MPEG으로 압축된 비디오(MPEG-compressed video)를 대상으로 내용기반 색인(content-based indexing)에 기초가 될 동영상 자도 d분할에 관한 효과적인 방법을 제안한다. 제안하는 방법은 MPEG 시퀀스의Ⅰ(Intra), P(Predictive), B(bidirectional) 픽쳐 구성에 구애받지 않고 장면 전환점(scene change)을 검출해 낸다. 컷(cut) 검출을 위해서는 Ⅰ픽쳐의 dc 계수와 P, B 픽쳐의 매크로 블록 참조 특성을 이용하여 차이 측도(difference measure)를 설정한다. 그리고 점진적인 (gradual)장면 전환에서는 p, B 픽쳐의 참조 블록 비율을 이용하여 정확하게 장면 전환 지점을 검출한다. 이때 MPEG 시퀀스를 완전히 복원하지 않고 필요한 데이터만을 추출해 내어 전체 데이터 처리 과정을 좀 더 효율적으로 구성한다. 차이 척도의 성능과 검출 결과는 정확도(precision)와 완전추출도(recall)를 기준으로 비교분석하고, 제안한 방법을 다양한 MPEG 시퀀스에 적용시켜 검출 결과와 수행 시간 측면에서 그 효율성을 확인하였다.
본 논문에서는 칼라 영상으로부터 관심 객체를 효과적으로 추출할 수 있는 방법을 제안한다. 본 논문에서 제안한 방법은 추출할 객체에 대한사전 지식이 필요 없으며 단순한 배경뿐만 아니라 복잡한 배경에서도 영상에 포함된 관심 객체를 추출하는 것이 가능하도록 한다. 이를 위해 가버 필터 사전을 사용하여 객체의 대략적인 형상을 포함하는 가버 영상을 생성한다. 이를 기반으로 객체 추출에 필요한 특징 정보의 추출 기준이 되는 관심 창(attention window)의 초기 위치를 설정한다. 객체 추출 단계는 기존 연구에서 제안한 방법을 일부 수정하여 적용한다. 제안된 방법의 추출 성능을 평가하기 위해 제안된 방법으로 추출된 결과를 수작업으로 추출된 객체와 비교하여 Precision, Recall 및 F-measure를 계산한다. 이를 통해 제안된 방법의 성능을 확인하였다. 또한 기존 방법과의 추출 결과 비교를 통해 제안된 방법의 우수성을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.