• 제목/요약/키워드: Recall and Precision

검색결과 724건 처리시간 0.026초

SVM을 이용한 가정용 협력 로봇의 조인트 위치 기반 실행동작 예측 모델 개발 (Development of Joint-Based Motion Prediction Model for Home Co-Robot Using SVM)

  • 유성엽;유동연;박예슬;이정원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권12호
    • /
    • pp.491-498
    • /
    • 2019
  • 디지털 트윈은 현실 세계의 물리적인 사물을 컴퓨터상에 동일하게 가상화시키는 기술로써, IoT을 통해 센서 데이터를 수집하고, 수집한 데이터를 활용하여 물리적인 사물과 가상 사물을 양방향으로 연결을 할 수 있게 한다. 디지털 트윈 기술은 가상 모델의 시뮬레이션을 통해 동작을 조정하고 환경변화에 대한 대응을 미리 실험하여 위험성을 최소화할 수 있는 장점을 지닌다. 최근 인공지능이나 기계학습에 관련된 기술들이 주목받기 시작하면서, 물리적인 사물의 동작을 가상화하여 가상 모델을 관찰하고 다양한 시나리오를 적용하려는 시도가 증가하고 있다. 특히, 인더스트리 4.0에서 공장자동화의 핵심인 협력 로봇의 디지털 트윈을 구축하기 위해서는 로봇의 동작을 인지하는 과정이 필수적으로 요구된다. 로봇의 동작을 인지하기 위한 모델링 기반의 연구에 비해 센서 데이터 기반으로 동작을 예측하는 연구는 미비한 상황이다. 따라서 본 논문에서는 로봇의 동작을 인지하기 위해 가정용 협력 로봇에서 전류 및 관성 센서 데이터를 수집하기 위한 실험 환경을 구축하고, 수집한 센서 데이터를 기반으로 한 동작 예측 모델을 제안하고자 한다. 제안하는 방식은 조인트 위치 기반으로 로봇의 동작 명령어를 9가지로 분류하고 전류와 관성 센서값을 사용하여 학습을 통해 예측하는 방식이다. 이때, 학습에 사용되는 데이터는 협력 로봇이 동작 명령어의 입력 파라미터에 마진을 가지고 작동할 때 수집되는 센서값이다. 이를 통해, 동일한 경로를 따라 이동하는 9가지 동작뿐만 아니라 각 동작과 비슷한 경로를 따라 이동하는 동작에 대해서도 예측하는 모델을 구축하였다. SVM을 이용하여 학습한 결과, 모델의 성능은 평균적으로 정확도, 정밀도, 및 재현율이 모두 97%로 평가되었다.

SIFT와 신경망을 이용한 학습 기반 차량 번호판 검출 (Learning-based Detection of License Plate using SIFT and Neural Network)

  • 홍원주;김민우;오일석
    • 전자공학회논문지
    • /
    • 제50권8호
    • /
    • pp.187-195
    • /
    • 2013
  • 차량 번호판 검출의 기존 연구들은 대부분 높은 성능을 얻기 위해 영상 획득 환경을 제한한다. 본 논문은 제약사항이 적은 환경에서 다양한 종류의 차량 번호판을 검출하기 위해 SIFT와 신경망을 이용한 새로운 방법을 제안한다. SIFT는 영상의 크기, 회전 변화에 불변하는 지역특징으로서 처리해야 할 환경이 고정되지 않은 경우에도 분별력이 뛰어나다. 영상에서 추출한 SIFT를 번호판 내부의 것(내부 부류)과 외부의 것(외부 부류)으로 나누어 2부류 분류기를 학습한다. 분류기는 신경망을 사용하며, 찾고자 하는 번호판의 종류를 학습 집합에 포함하는 것으로 다양한 종류의 번호판을 동일한 알고리즘으로 검출할 수 있다. 제안하는 방법은 입력 영상에서 지역특징을 추출하고 미리 학습한 분류기로 번호판 내부 부류를 가려낸다. 분류기의 성능이 높지 않더라도 분류 결과 내부 부류는 번호판 내부에 밀집하여 나타나고 번호판 외부에서는 흩어져 나타난다. 이러한 특성을 이용해 지역특징 맵을 만들고, 이 맵에서 임계값 이상인 전역 최댓값을 번호판 영역으로 검출한다. 다양한 환경에서 데이터 베이스를 수집하고 지역특징 분류와 번호판 검출 알고리즘을 실험한다. 지역특징을 분류기로 분류한 결과 정인식률은 97.1%, 정확률은 62.0%, 재현율은 50.2%를 보였다. 정인식률에 비해 정확률과 재현율은 낮았지만, 번호판 검출 결과 98.6%의 높은 검출 성능을 보였다.

내용 기반 및 식품 교환 표를 이용한 맞춤형 건강식단 추천 기법 (A Customized Healthy Menu Recommendation Method Using Content-Based and Food Substitution Table)

  • 오유리;김윤희
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권3호
    • /
    • pp.161-166
    • /
    • 2017
  • 최근 현대인들은 풍족해진 먹을거리에도 불구하고, 특정 영양소의 과잉 및 부족 섭취로 영양불균형의 문제로 겪고 있다. 이에 따라, 건강 및 식단조절에 관한 관심이 증가하였고, 다양한 모바일시스템을 이용한 어플리케이션들이 등장하였다. 하지만 대부분의 어플리케이션들은 섭취한 식단을 기록하고 단순한 통계를 보여주는데 그치는 수준이며 건강 식단을 위한 일반적인 정보를 제공한다. 건강에 관심 있는 사용자에게는 실질적으로 본인의 음식 선호를 반영하거나 맞춤형 권장 정보를 제공하는 추천서비스가 필요하다. 따라서 본 연구에서는 사용자의 신체 및 활동조건에 따른 권장섭취열량에 대해 식품군별 교환단위수를 부여하고, 과거 섭취이력을 활용하여 음식 선호를 분석하여 식품군별 권장섭취 단위수를 만족하는 식단추천 기법을 제안한다. 또한 실험을 통하여 사용자의 선호만을 고려한 경우, 권장교환단위만을 고려하는 경우와 비교하여 정밀도, 재현율, 건강지수, 그리고 3지표의 조화평균을 도출하고 제안하는 알고리즘의 우수성을 증명하였다. 해당 기법을 활용하여 사용자는 본인의 선호를 반영하는 맞춤형 건강식단을 추천받을 수 있으며 이를 통해 건강한 식습관 개선 및 유지에 도움을 줄 수 있다.

적합성 피드백을 통해 결정된 가중치를 갖는 시각적 특성에 기반을 둔 이미지 검색 모델 (A Image Retrieval Model Based on Weighted Visual Features Determined by Relevance Feedback)

  • 송지영;김우철;김승우;박상현
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제34권3호
    • /
    • pp.193-205
    • /
    • 2007
  • 디지털 이미지의 양이 증가함에 따라 원하는 이미지를 정확하고 빠르게 찾을 수 있는 방법의 필요성이 증가하고 있다. 이미지 검색 방법으로는 이미지의 색상이나 명암과 같은 시각적 특성을 검색 조건으로 이용하는 내용 기반 검색과 이미지를 설명하는 키워드를 검색 조건으로 이용하는 키워드 기반 검색이 있다. 하지만 이러한 방법만으로는 사용자가 원하는 이미지를 정확하게 찾기 힘들다는 문제점이 제기되어 왔다. 따라서 최근에는 검색 도중 사용자의 응답을 받아 사용자의 요구를 파악함으로써 향상된 검색 결과를 제공하는 적합성 피드백에 대한 연구가 많이 진행되고 있다. 하지만 적합성 피드백을 이용하는 방법들도 원하는 결과를 얻기 위해서는 여러 번의 피드백을 필요로 하고 질의 수행이 완료된 후에는 얻어진 피드백 정보를 재사용하지 못한다는 단점이 있다. 따라서 본 논문에서는 이미지에 키워드를 연결한 후 사용자의 피드백 정보를 반영하여 키워드의 신뢰도를 조절함으로써 키워드 기반 이미지 검색의 정확도를 높일 수 있는 모델을 제안한다. 제안된 모델에서는 사용자로부터 피드백을 받은 이미지뿐만 아니라 긍정적 피드백을 받은 이미지들이 공통적으로 가지는 시각적 특성과 유사한 시각적 특성을 가지는 다른 이미지들까지도 키워드의 신뢰도를 조정함으로써 좀 더 빠른 시간 내에 검색 결과의 정확도를 높이도록 한다. 제안한 방법의 정확성을 검증하기 위한 실험 결과에 따르면, 같은 횟수의 피드백을 받으면서도 재현율과 정확률은 빠른 증가를 보이는 것으로 나타났다.

Xception 모델링을 이용한 흉부 X선 영상 폐렴(pneumonia) 진단 시 배치 사이즈별 비교 분석 (Comparative Analysis by Batch Size when Diagnosing Pneumonia on Chest X-Ray Image using Xception Modeling)

  • 김지율;예수영
    • 한국방사선학회논문지
    • /
    • 제15권4호
    • /
    • pp.547-554
    • /
    • 2021
  • 흉부 X선 영상의 폐렴을 신속하고 정확하게 진단하기 위하여 동일한 Xception 딥러닝 모델에 배치 사이즈를 4, 8, 16, 32로 다르게 적용하여 각각 3회의 모델링을 실시하였다. 그리고 성능평가 및 metric 평가에 대한 결과값을 3회 평균값으로 산출하여 배치 사이즈별 흉부 X선 영상의 폐렴 특징 추출과 분류의 정확도 및 신속성을 비교 평가하였다. 딥러닝 모델링의 성능평가 결과 배치 사이즈 32를 적용한 모델링의 경우 정확도, 손실함수 값, 평균제곱오차, 1 epoch 당 학습 소요 시간의 결과가 가장 우수한 결과를 나타내었다. 그리고 Test Metric의 정확도 평가는 배치 사이즈 8을 적용한 모델링이 가장 우수한 결과를 나타내었으며, 정밀도 평가는 모든 배치 사이즈에서 우수한 결과를 나타내었다. 재현율 평가는 배치 사이즈 16을 적용한 모델링이 가장 우수한 결과를 나타내었으며, F1-score는 배치 사이즈 16을 적용한 모델링이 가장 우수한 결과를 나타내었다. 그리고 AUC score 평가는 모든 배치 사이즈의 결과가 동일하였다. 이러한 결과를 바탕으로 배치 사이즈 32를 적용한 딥러닝 모델링이 높은 정확도, 안정적인 인공신경망 학습 및 우수한 신속성의 결과를 나타내었다. 향후 딥러닝을 이용한 흉부 X선 영상의 폐렴에 대한 특징 추출 및 분류에 관하여 자동진단 연구 시 배치 사이즈를 32로 적용한다면 정확하면서도 신속한 병변 검출이 가능할 것이라고 사료된다.

드론 다중분광영상과 컴퓨터 비전 기술을 이용한 배추 객체 탐지 알고리즘 개발 (Development of Chinese Cabbage Detection Algorithm Based on Drone Multi-spectral Image and Computer Vision Techniques)

  • 류재현;한중곤;안호용;나상일;이병모;이경도
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.535-543
    • /
    • 2022
  • 농업분야에서 드론을 활용하여 작물의 생육을 진단하고 정보를 영상으로 제공하고 있다. 들녘 단위에 대한 고해상도 드론 영상을 활용하는 경우 객체별 생육정보를 생산할 수 있으나 정확하게 작물을 탐지하고 인접한 객체를 효율적으로 구분하기 위한 작업이 요구된다. 본 연구에서는 작물 객체를 탐지하고 위치 정보를 추출하는 알고리즘을 개발하는 것이 목적이다. 드론 다중분광영상과 컴퓨터 비전 기술을 활용하여 객체 탐지를 위한 알고리즘을 개발하였으며, 대상 작물은 가을배추로 선정하였다. 2018년~2020년까지 가을배추를 대상으로 정식 후 7일~15일 사이의 드론 영상을 취득하였으며, 2019년 영상 기반으로 객체 탐지 알고리즘을 개발한 뒤 2018년, 2020년 영상을 기반으로 알고리즘 평가를 수행하였다. 분광반사도 기반 지수와 식생의 분광반사도 특성을 고려하여 식생 지역을 추출하였다. 이후 추출된 식생 지역에서 객체의 크기를 고려하여 팽창(Dilatation), 침식(Erosion), 이미지 분할 등과 같은 모폴로지(Morphology) 기법을 통해 객체 탐지 정확도를 향상시켰다. 개발된 객체 탐지 알고리즘의 정밀도는 95.19% 이상이었으며, 재현율과 정확도는 각각 95.4%, 93.68% 이상이었다. 객체 탐지 알고리즘의 F1-Score는 0.967 이상으로 나타났다. 본 연구에서 개발한 알고리즘을 이용하여 추출된 배추 객체 중심에 대한 위치 정보는 작물의 재배시기에 따라 영농단계별 의사결정 정보를 제공하기 위한 자료로써 활용될 것이다.

머신러닝 기법을 활용한 수입 수산물 통관검사결과 분류 모델 (A Classification Model for Customs Clearance Inspection Results of Imported Aquatic Products Using Machine Learning Techniques)

  • 엄지성;이경희;조완섭
    • 한국빅데이터학회지
    • /
    • 제8권1호
    • /
    • pp.157-165
    • /
    • 2023
  • 수산물은 많은 국가의 주요한 단백질 공급원이며 소비가 증가하고 있다. 우리나라도 수산물 소비는 증가하는 반면 자급률은 낮아지고 있으며, 수산물의 수입량이 증가함에 따라 안전관리의 중요성이 높아지고 있다. 국내로 수입되는 수산물은 110여 개 국가로부터 수백 종에 이르며, 수입 수산물의 안전관리를 검사관의 경험에만 의존하는 것은 한계가 있다. 데이터를 기반으로 수입 수산물 통관검사 결과를 예측할 수 있는 모델을 개발하여 수입신고서가 제출되었을 때 수산물의 부적합 가능성을 판단하는 머신러닝 분류 모델을 생성한다. 수입수산물 통관검사 결과 부적합율은 1% 미만으로 매우 낮은 불균형 데이터이므로 이러한 특성을 보완할 수 있는 샘플링 방법을 비교 연구하였고, 분류결과를 해석할 수 있는 전처리 방법을 적용하였다. 여러 가지 머신러닝 기반의 분류모델 중에서 랜덤포레스트와 XGBoost가 좋은 성능을 보였다. 통관검사 결과 적합과 부적합을 모두 잘 예측하는 모델은 ADASYN과 원-핫 인코딩을 적용한 랜덤포레스트 기본 모델이며 정확도 99.88%, 정밀도 99.87%, 재현율 99.89%, AUC 99.88%이다. XGBoost는 오버샘플링과 인코딩 종류에 상관없이 모든 지표가 90%를 넘겨 가장 안정적인 모델이다.

비지도학습 오토 엔코더를 활용한 네트워크 이상 검출 기술 (Network Anomaly Detection Technologies Using Unsupervised Learning AutoEncoders)

  • 강구홍
    • 정보보호학회논문지
    • /
    • 제30권4호
    • /
    • pp.617-629
    • /
    • 2020
  • 인터넷 컴퓨팅 환경의 변화, 새로운 서비스 출현, 그리고 지능화되어 가는 해커들의 다양한 공격으로 인한 규칙 기반 침입탐지시스템의 한계점을 극복하기 위해 기계학습 및 딥러닝 기술을 활용한 네트워크 이상 검출(NAD: Network Anomaly Detection)에 대한 관심이 집중되고 있다. NAD를 위한 대부분의 기존 기계학습 및 딥러닝 기술은 '정상'과 '공격'으로 레이블링된 훈련용 데이터 셋을 학습하는 지도학습 방법을 사용한다. 본 논문에서는 공격의 징후가 없는 일상의 네트워크에서 수집할 수 있는 레이블링이 필요 없는 데이터 셋을 이용하는 비지도학습 오토 엔코더(AE: AutoEncoder)를 활용한 NAD 적용 가능성을 제시한다. AE 성능을 검증하기 위해 NSL-KDD 훈련 및 시험 데이터 셋을 사용해 정확도, 정밀도, 재현율, f1-점수, 그리고 ROC AUC (Receiver Operating Characteristic Area Under Curve) 값을 보인다. 특히 이들 성능지표를 대상으로 AE의 층수, 규제 강도, 그리고 디노이징 효과 등을 분석하여 레퍼런스 모델을 제시하였다. AE의 훈련 데이터 셋에 대한 재생오류 82-th 백분위수를 기준 값으로 KDDTest+와 KDDTest-21 시험 데이터 셋에 대해 90.4%와 89% f1-점수를 각각 보였다.

특징 지도를 이용한 중요 객체 추출 (Extraction of Attentive Objects Using Feature Maps)

  • 박기태;김종혁;문영식
    • 대한전자공학회논문지SP
    • /
    • 제43권5호
    • /
    • pp.12-21
    • /
    • 2006
  • 본 논문에서는 컬러 영상에서 배경의 복잡도와 객체의 위치에 관계없이 영상 내에 존재하는 중요 객체를 자동으로 추출하는 방법을 제안한다. 제안하는 방법은 중요 객체를 추출하기 위해 에지(edge) 정보와 색상(color) 정보를 이용한 특징 지도를 사용한다. 또한, 효과적인 객체 추출을 위해서 참조 지도(reference map)를 제안한다. 참조 지도를 생성하기 위해서는 영상에서 사람의 시각에 두드러지게 구분되는 영역을 표현하는 특징 지도(feature map)를 먼저 생성한다. 그런 다음, 특징 지도들을 효과적으로 결합하여 배경의 영향을 최소화 하면서, 중요 객체가 존재할 확률이 높은 영역들을 포함하는 참조 지도를 생성한다. 특징 지도를 생성하기 위해서는 밝기 차 정보를 나타내는 에지와 YCbCr 컬러와 HSV 컬러 공간에서의 색상 성분을 사용하며, 특징 지도에 대한 생성 방법은 영상 내에서 밝기차이와 색상차이에 의해서 나타나는 경계 부분을 추출하는 방법을 사용한다. 최종적으로 중요 객체가 존재하는 영역을 나타내기 위해서 참조 지도와 특징 지도들을 결합한 결합 지도(combination map)를 생성한다. 결합 지도는 중요 객체의 외곽선 정보만을 표현하기 때문에, 객체 전체를 표현할 수 있는 객체 후보 영역을 추출하는데, 이를 위해서는 객체 후보 영역을 추출하기 위해서 convex hull 알고리즘을 사용한다. Convex hull 알고리즘에 의해서 추출된 영역은 여전히 배경 부분을 포함하고 있으므로, 영상 분할 방법을 적용하여 배경을 제거한 후 영상에서의 중요 객체를 추출한다. 제안한 알고리즘의 성능을 실험적으로 확인한 결과, 평균적으로 84.3%의 정확율과 81.3%의 재현율의 성능을 보였다.

인터넷 토론 사이트의 논쟁댓글 및 논쟁관계 시각화 (Extracting and Visualizing Dispute comments and Relations on Internet Forum Site)

  • 이윤정;정인준;우균
    • 한국콘텐츠학회논문지
    • /
    • 제12권2호
    • /
    • pp.40-51
    • /
    • 2012
  • 최근에는 인터넷 토론 사이트에서 댓글을 이용해 다른 사람들과 토론이나 논쟁하는 경우를 흔히 볼 수 있다. 논쟁을 통해 게시물의 내용과는 다른 새로운 의견이 나타날 수도 있으므로 논쟁댓글을 파악하고 식별하는 것은 중요한 문제라고 할 수 있다. 본 논문에서는 국내의 인터넷 토론 사이트인 SkepticalLeft와 아고라에서 수집한 댓글을 통해 인터넷 토론 게시판에서 논쟁댓글의 특성을 분석하였다. 그리고 이를 바탕으로 댓글 목록의 논쟁구간과 논쟁관계를 검출하고 이를 시각화하는 방법을 제안한다. 제안 방법의 성능을 보이기 위해 논쟁댓글과 논쟁 쌍을 검출하고 정확도와 재현율 그리고 F-measure를 측정하였다. 논쟁댓글검출 성능은 F-measure가 0.84(SkepticalLeft)와 0.83(아고라)으로 측정되었고, 논쟁 쌍 검출은 각각 0.75(SketpcialLeft)와 0.82(아고라)로 측정되었다. 제안 방법은 댓글 작성자의 순서관계만을 이용하므로 사용언어나 철자법에 제약받지 않는다. 또한 시각화된 뷰를 통해 게시판 이용자들이 댓글에 내포된 논쟁구조를 파악하는데 도움을 줄 것이다.