• Title/Summary/Keyword: Reburning

Search Result 26, Processing Time 0.022 seconds

Reduction of Nitrogen Oxides from Fuel Nitrogen in New Fuelling System

  • 전영남;채재우
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.10
    • /
    • pp.885-892
    • /
    • 1996
  • The effects of NOx reduction by advanced fuel staging in a small scale combustor (6.6 kWT) have been investigated using propane gas flames laden with ammonia as fuel-nitrogen. The variables which had the greatest influence on NOx reduction were temperature, reducing stoichiometry (relate to main combustion zone stoichiometry, air fraction and reburning fuel fraction) and residence time of reducing zone. NOx reduction was best at the reburning zone temperature of above 1,000 ℃ and reburning zone stoichiometry was 0.85. In terms of residence time of the reburning zone, NOx reduction was effective when burnout air was injected at the point where the reburning zone had been already established. In the advanced fuel staging NOx reduction was relatively large at the burning of higher Fuel-N concentration in the fuel. Under optimum reburning conditions, fuel nitrogen content had a relatively minor impact on reburning efficiency.

The Effect of Biomass Reburning with Rice Husk on NOx Reduction in Light Oil Flame (경유 화염에서 왕겨를 이용한 바이오매스 재연소의 NOx 저감 효과)

  • Kim, Se-Won;Shin, Myeung-Chul;Lee, Chang-Yeop
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.17-24
    • /
    • 2009
  • Reburning is one of the most useful technologies for reducing nitric oxide in economically and technically. The reburning process was demonstrated as an effective NOx reduction method through injection of a secondary hydrocarbon fuel. An experimental study has been conducted to evaluate the effect of biomass reburning on NOx and CO formation in a light oil flamed combustion furnace. Reburning tests on NOx reduction of air-carried rice husk powder as the reburn fuel and light oil as the main fuel were performed in flames stabilized by a co-flow swirl and fuel staged burner, which was mounted at the front of the furnace. The results included flue gas emissions and temperature distribution in the furnace for several kinds of experimental conditions. It was observed clearly that NOx concentrations in the exhaust have considerably decreased due to effect of biomass reburning. The maximum NOx reduction rate was 42% when the reburn fuel fraction was 0.18. The CO emissions were kept under 42 ppmv in all experimental tests. And this paper makes clear that in order to decrease NOx concentration in the exhaust when the biomass reburning system is adapted, the control of some factors such as reburn fuel fraction and reburn zone fraction is very important.

  • PDF

Experimental Study on NOx Reduction and CO Emission by Fuel Lean Reburning Process (연료 희박 재연소 과정에 의한 NOx 저감 및 CO 발생에 대한 실험적 연구)

  • Lee, Chang-Yeop;Kim, Hak-Young;Baek, Seung-Wook;Kim, Se-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.216-223
    • /
    • 2008
  • Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the effect of fuel lean reburning on $NO_X/CO$ reduction in LPG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LPG gas as the reburn fuel as well as the main fuel. The effects of reburn fuel fraction and injection location of the reburn fuel were studied when the fuel lean reburning system was applied. The paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. At steady state, temperature distribution and emission formation in the furnace have been measured and compared. This paper makes clear that in order to decrease both NOx and CO concentrations in the exhaust when the fuel lean reburning system was adapted, it is important that the control of some factors such as initial equivalence ratio, reburn fuel fraction and temperature of reburn fuel injection region. Also it shows the fuel lean reburning is also effective method to reduce NOx as much as reburning.

Experimental and Numerical Investigation for NOx Reduction with Fuel Lean Reburning System (NOx저감을 위한 연료희박 재연소 기법의 실험 및 수치적 연구)

  • Kim, Hak-Young;Baek, Seung-Wook;Son, Hee;Kim, Se-Won
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.18-25
    • /
    • 2009
  • Fuel lean reburning method is very attractive way in comparison with conventional reburning method for reducing NOX. Meanwhile, the knowledge of the how flue gas re-circulated, temperature distribution and species concentration is crucial for the design and operation of an effective fuel lean reburning system. For this reason, numerical analysis of fuel lean reburning system is a very important and challenge task. In this work, the effect of fuel lean reburn system on NOX reduction has been experimentally and numerically conducted. Experimental study has been conducted with a 15kW lab scale furnace. Liquefied Petroleum Gas is used as main fuel and reburn fuel. To carry out numerical study, the finite-volume based commercial computational fluid dynamics (CFD) code FLUENT6.3 was used to simulate the reacting flow in a given laboratory furnace. Steady state, three dimensional analysis performed for turbulent reactive flow and radiative heat transfer in the furnace.

  • PDF

Effect of a Multi Air-staged Burner on NOx Formation and Heat Transfer in Furnace Adopted the Reburning Process (재연소 과정을 적용한 연소로에서 공기 다단 연소기의 NOx 발생 및 열전달에 대한 효과)

  • Kim, Hyuk-Su;Baek, Seung-Wook;Lee, Chang-Yeop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.842-849
    • /
    • 2006
  • An experimental study has been conducted to investigate the effects of a multi air-staged burner on NOx formation and heat transfer in a 15kW large-scale laboratory furnace adopted the reburning process. The reburn fuel as well as burnout air was injected from each nozzle attached at the wall of the cylindrical furnace. Fuel in both main burner and reburn nozzle was LPG (Liquefied Petroleum Gas). The paper reports the influences on NOx reduction of reburn fuel fraction in reburning zone. Temperature distribution inside the overall region as well as total heat flux at the wall of the furnace has been measured to examine the heat transfer characteristics due to the reburning process. For comparison, the reburning effects were examined for a combustor with two types of burner; a regular single staged burner and a multi-air staged burner. A gas analysis was also performed to evaluate an appropriate condition for NOx emission in a primary zone for the excess air ratio of 1.1. As a result, combustion efficiency expected to become more efficient due to the reduction of heat loss in burnout zone decrease when multi air-staged burner in furnace adopted reburning technology was used.

Reduction of Nitrogen Oxide by Fuel Staged Technology on the Combustion of Gasification Fuel (가스화 연료 연소시 단계적 연료주입 기술에 의한 질소산화물 저감)

  • Chae, Jong-Seong;Jo, Seon-Hui;Jeon, Yeong-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.2
    • /
    • pp.107-116
    • /
    • 1998
  • Coal gasification fuel has generally a lower calorific values than natural gas and also contains ammonia which is a main source of fuel NOx. Such a fuel is in need of the advanced technologies for the NOx reduction with higher combustion efficiency. Therefore fuel staged combustion was investigated for the fuel NOx control using a bench scale gas combustoi for the fuel NOx control. Parametric screening studies were performed with the variation of air ratio, retention length and reburning fuel. The NOx reduction efficiency was increased with an increase of total air ratio having optimum reburning air ratio differently, The Increased retention length of the reburning zone was preferable for NOx reduction. Hydrocarbonic reburning fuels like propane and butane were more effective for the NOx reduction efficiency than hydrogen fuel. The NOx concentration at exit was linearly increased according to the fuel-N the fuel.

  • PDF

The Effect of Hybrid Reburning on NOx Reduction in Oxygen-Enriched LPG Flame (산소부화 LPG 화염에서 혼합형 재연소 방법에 의한 NOx 저감 효과)

  • Lee, Chang-Yeop;Baek, Seung-Wook
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.4
    • /
    • pp.14-21
    • /
    • 2007
  • In order to enhance combustion efficiency, oxygen-enriched combustion is used by increasing the oxygen ratio in the oxidizer. However, since the flame temperature increases, NOx formation in the furnace seriously increases for low oxygen enrichment ratio. In this case, reburning is a useful technology for reducing nitric oxide. In this research, experimental studies have been conducted to evaluate the hybrid effects of reburning/selective non-catalytic reaction (SNCR) and reburning/air staging on NOx formation and also to examine heat transfer characteristics in various oxygen-enriched LPG flames. Experiments were performed in flames stabilized by a co-flow swirl burner, which were mounted at the bottom of the furnace. Tests were conducted using LPG gas as main fuel and also as reburn fuel. The paper reported data on flue gas emissions, temperature distribution in furnace and various heat fluxes at the wall for a wide range of experimental conditions. Overall temperature in the furnace, heat fluxes to the wall and NOx generation were observed to increase by low level oxygen-enriched combustion, but due to its hybrid effects of reburning, SNCR and Air staging, NOx concentration in the exhaust have decreased considerably.

  • PDF

The Effects of Advanced Reburning with SNCR on NOx and CO Reduction (무촉매 환원법이 적용된 응용 재연소 방법에 의한 NOx와 CO의 저감 효과)

  • Lee Chang-Yeop;Kim Dong-Min;Baek Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.788-795
    • /
    • 2006
  • From the view of the environmental protection against the use of fossil fuels, the great of efforts have been exerted to find an effective method which is not only pollutant reduction but also high thermal efficiency. Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the hybrid effects of reburning and selective non-catalytic reaction (SNCR) on $NO_x/CO$ reduction from oxygen-enriched LPG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LPG gas as main fuel and also as reburn fuel. The paper reported data on flue gas emissions, temperature distribution in furnace and various heat fluxes at the wall for a wide range of experimental conditions. Overall temperature in the furnace, heat fluxes to the wall and $NO_x$ generation were observed to increase by oxygen-enriched combustion, but due to its hybrid effects of reburning and SNCR, $NOx/CO$ concentration in the downstream has considerably decreased.

The Comparison Study on Reburning Effects of LNG and Rice Husk in Heavy Oil Flamed Furnace (중유 화염 연소로에서 LNG와 왕겨분말의 재연소 효과 비교)

  • Shin, Myeung-Chul;Kim, Se-Won;Lee, Chang-Yeop
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.25-32
    • /
    • 2009
  • In commercial combustion systems, heavy oil is one of main hydrocarbon fuel because of its economical efficiency. Regarding heavy oil combustion, due to increasing concerns over environmental pollutants such as carbon monoxide, unburned hydrocarbon and nitrogen oxides, development of low pollutant emission methods has become an imminent issue for practical application to numerous combustion devices. Also a great amount of effort has been tried to developed effective methods for practical using of biomass. It is also an important issue to reduce carbon tax. In this paper, an experimental study has been conducted to evaluate the effect of biomass reburning on NOx formation in a heavy oil flamed combustion furnace. Experiments were performed in flames stabilized by a multi-staged burner, which was mounted at the front of the furnace. Experimental tests were conducted using air-carried rice husk powder and LNG as the reburn fuel and heavy oil as the main fuel. The paper reports data on flue gas emissions and temperature distribution in the furnace for several kinds of experimental conditions. NOx concentration in the exhaust has decreased considerably due to effect of reburning. The maximum NOx reduction rate was 62% when the rice husk was used by reburn fuel, however it was 59% when the LNG was used by reburn fuel. The result shows the positive possibility of biomass reburning system for optimal NOx reduction.

  • PDF

Experimental Investigation of NOX Reduction using a Hybrid Fuel Lean Reburning System (NOx 저감을 위한 하이브리드 연료희박 재연소 연구)

  • Kim, Hak-Young;Baek, Seung-Wook;Hwang, Chang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.283-290
    • /
    • 2010
  • The main goal of this study is to examine the use of a hybrid -fuel lean reburning system with air staging for $NO_X$ reduction. The experimental variables include the reburn fuel fraction, sizes of reburn- fuel-injection nozzles, oxygen enrichment ratio, and location of reburn- fuel- injection. The effect of the flow field induced by air- staging combustion on $NO_X$ reduction is considered, and then, the $NO_X$ reduction rate is compared with only fuel lean reburning system. On the basis of the effectiveness of each De-$NO_X$ process, the advantage of using the hybrid reburning system with air staging is determined and discussed.