• Title/Summary/Keyword: Rebound test

Search Result 149, Processing Time 0.033 seconds

A Study on the Estimating the Ultra-High Strength Concrete using Rock Test Hammer (Rock Test Hammer를 사용한 초고강도 콘크리트 강도추정에 관한 기초적 연구)

  • Nam, Kyung-Yong;Kim, Seong-Deok;Choi, Suk;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.229-237
    • /
    • 2019
  • This study examines the estimation of strength through a ultra-high strength concrete mock-up specimen using the rock compressive strength test hammer. According to the test result, the commonly used strength estimation formulae showed differences among them when the data of this test were applied. In additional, it show that these formulae underestimated the actual measurements further when the compressive strength was 30MPa or greater and deviated the distribution range of actual measurements in all strength ranges. The rock test hammer showed a higher correlation than type N Schmidt hammer regardless of the direction of hit for each type of W/B and the inclusion of coarse aggregate, and mortar showed a little higher correlation than concrete. As a result, it can be suggested that the coefficient of variation and the standard deviation of the mortar(2.26%/1.36) are lower than those of the concrete(4.06%/2.5), and the smaller the size of the coarse aggregate, the smaller the coefficient of variation and the more accurate the value.

A Study on the Estimation of Strength Nondestructive Test of the Admixture Concrete (혼화콘크리트의 비파괴 강도 추정에 관한 연구)

  • Kim, Jeong-Sup;Shin, Yong-Seok;Kim, Pan-Sun;Cho, Cheol-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.217-226
    • /
    • 2005
  • This study made member specimen for taking specimen, core with the concrete mixing normal concrete, admixture and conducted the same air curing as field conditions. After performing destructive and nondestructive test by age, estimate expression was suggested by analyzing correlations between compressive strength, rebound number and ultrasonic pulse velocity and the results are as follows. As a result of comparing error rate of existing expressions and this estimation expression, error rate of this estimation is reduced compared to existing expressions and has higher reliability. When conventional concrete expression is applied to admixture concrete, error rate occurs and then this study suggests the estimation expressions depending on types of admixture concrete.

Basic Efficiency Assessment of polymer cementitious Self leveling for floor-finishing materials (폴리머 시멘트계 Self leveling 바닥마감재의 기초성능평가)

  • 도정윤;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.1005-1010
    • /
    • 2001
  • Recently, polymer-modified mortar has been studied for proposed use on industrial floors as top layers with thin thicknesses, typically 5~ 15mm. The purpose of this study is to evaluate basic properties of self leveling materials using polymer modifier as kinds of SBR, PAE, SUBA. Superplasticizer and thickener have been included in the mixes to reduce bleeding and drying shrinkage as well as in order to facilitate the workability required. The self leveling materials using four types of polymer dispersion are prepared with polymer-cement ratios which respectively range from 50%, 75%, and were tested for basic characteristics such as adhesion in tension, crack resistance test, rebound test after the preparative tests for unit weight, air content, consistency ratio etc. The results show almost as equal quality as existing commercial industrial flooring when mortar is modified by polymer dispersion. Adhesion in tension of polymer modified mortars using each SBR and PAE emulsion was over 10 kgf/$cm^{2}$. Crack or flaw derived from shrinkage is strongly dependent on the type of polymer dispersion because of each different total solid of polymer. It is judged that polymer modified mortar with self-leveling can be very well suited for Floor-finished.

  • PDF

Condition assessment of fire affected reinforced concrete shear wall building - A case study

  • Mistri, Abhijit;Pa, Robin Davis;Sarkar, Pradip
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.89-105
    • /
    • 2016
  • The post - fire investigation is conducted on a fire-affected reinforced concrete shear wall building to ascertain the level of its strength degradation due to the fire incident. Fire incident took place in a three-storey building made of reinforced concrete shear wall and roof with operating floors made of steel beams and chequered plates. The usage of the building is to handle explosives. Elevated temperature during the fire is estimated to be $350^{\circ}C$ based on visual inspection. Destructive (core extraction) and non-destructive (rebound hammer and ultrasonic pulse velocity) tests are conducted to evaluate the concrete strength. X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) are used for analyzing micro structural changes of the concrete due to fire. Tests are conducted for concrete walls and roof slab on both burnt and unburnt locations. The analysis of test results reveals no significant degradation of the building after the fire which signifies that the structure can be used with full expectancy of performance for the remaining service life. This document can be used as a reference for future forensic investigations of similar fire affected concrete structures.

The prediction of compressive strength and non-destructive tests of sustainable concrete by using artificial neural networks

  • Tahwia, Ahmed M.;Heniegal, Ashraf;Elgamal, Mohamed S.;Tayeh, Bassam A.
    • Computers and Concrete
    • /
    • v.27 no.1
    • /
    • pp.21-28
    • /
    • 2021
  • The Artificial Neural Network (ANN) is a system, which is utilized for solving complicated problems by using nonlinear equations. This study aims to investigate compressive strength, rebound hammer number (RN), and ultrasonic pulse velocity (UPV) of sustainable concrete containing various amounts of fly ash, silica fume, and blast furnace slag (BFS). In this study, the artificial neural network technique connects a nonlinear phenomenon and the intrinsic properties of sustainable concrete, which establishes relationships between them in a model. To this end, a total of 645 data sets were collected for the concrete mixtures from previously published papers at different curing times and test ages at 3, 7, 28, 90, 180 days to propose a model of nine inputs and three outputs. The ANN model's statistical parameter R2 is 0.99 of the training, validation, and test steps, which showed that the proposed model provided good prediction of compressive strength, RN, and UPV of sustainable concrete with the addition of cement.

Change in the Concrete Strength of Forest Road Drainage Systems Caused by Forest Fires (산불로 인한 임도 배수시설의 콘크리트 강도 변화)

  • Ye Jun Choe;Jin-Seong Hwang;Young-In Hwang;Hyeon-Jun Jeon;Hyeong-Keun Kweon;Joon-Woo Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.451-458
    • /
    • 2023
  • As forest fires continue to increase in scale worldwide, the importance of forest roads in relation to forest fire prevention and suppression has become increasingly evident. To ensure effective functioning during a forest fire disaster, it is crucial to apply appropriate road planning and ensure roads' structural integrity. However, previous studies have predominantly focused on the impact of forest fires on firebreak efficacy and road placement, meaning that insufficient attention has been paid to ensuring the safety of these facilities. Therefore, this study sought to compare the strength of concrete facilities within areas damaged by forest fires over the past three years by using the rebound hammer test to identify signs of thermal degradation. The results revealed that concrete facilities damaged by forest fires exhibited significantly lower strength (15.6 MPa) when compared with undamaged facilities (18.0 MPa) (p<0.001), and this trend was consistent across all the target facilities. Consequently, it is recommended that safety assessment criteria for concrete forest road facilities be established to prevent secondary disasters following forest fire damage. Moreover, continuous monitoring and research involving indoor experiments are imperative in terms of enhancing the stability of forest road structures. It is expected that such research will lead to the development of more effective strategies for forest fire prevention and suppression.

A Study on the Compressive Strength Prediction of Crushed Sand Concrete by Non-Destructive Method (부순모래 콘크리트의 비파괴 시험에 의한 압축강도 추정에 관한 연구)

  • Kim, Myung-Sik;Baek, Dong-Il;Kim, Kang-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • Percentage that aggregate of materials that concrete composed about $70{\sim}80%$ of whole volume, therefore influence that quality of aggregate gets in concrete characteristics are very important. Schmidt hammer and ultra-sonic velocity method are commonly used for crushed sand concrete compressive strength test in a construction field. At present, various equations for prediction of strength are present, which have been used in a construction field. The purpose of this study is to evaluate the correlation between prediction strength by present equations and destructive strength to test specimen, and find out which is a suitable equation for the construction site, a strength test was carried out destructive test by means of core sampling and traditional test. The experimental parameters were concrete age, curing condition, and strength level. It is demonstrated that the correlation behavior of crushed sand concrete strength in this study good due to the perform analysis of correlation between core, destructive strength and non-destructive strength.

Calculation of Aging Effects of Ultrasonic Pulse Velocity in Concrete by Non-Destructive Test (비파괴시험에 의한 콘크리트 초음파속도의 재령계수 산정)

  • Cho, Chang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.173-179
    • /
    • 2008
  • This paper aims to calculate age coefficient of ultrasonic pulse velocity by non-destructive test. When concrete compressive strength is measured by non-destructive test, rebound test hammer method is applied to estimate age coefficient depending on the course of time after concrete casting, but ultrasonic pulse velocity method is not applied in the process. Although it is necessary to consider age coefficient with change of ultrasonic pulse velocity of concrete depending on aging, there have been little attempts to apply that method. The experiments were conducted to calculate aging effects which will be applied to establish the formula of measuring concrete strength. As a result of experiments, it was found that ultrasonic pulse velocity showed radical changes depending on concrete hardening in comparison with initial standard values. So, it was concluded that age coefficient must be applied to calculate strength. In conclusion, age coefficient of ultrasonic pulse velocity of concrete was suggested on the basis of experimental results.

Bearing Capacity of Waste Landfill Reinforced by Geosynthetics (토목섬유로 보강된 폐기물 매립지반의 지지력 특성)

  • Shin, Eun-Chul;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.39-46
    • /
    • 2007
  • Many industrialized countries of the world have many problems about the reuse of waste landfill area because the increase of terminated waste disposal landfill. Especially, the effective use of the terminated waste disposal landfill nearby the urban area has been demanded, because of the lack of the usable land. However, the reuse of terminated waste disposal landfill site is needed an adequate stabilization of ground for increasing the bearing capacity and reduce the allowable settlement for the given structure. This study is to evaluate the applicability of geosynthetics for the increment of bearing capacity of solid waste landfill ground. The in-situ cyclic plate loading tests were performed to determine the dynamic and static behaviors of reinforced ground with geosynthetics. Four series of test were conducted with variations of geosynthetics, number of geogrid layer. Based on the cyclic plate load test results, the bearing capacity ratio, subgrade modulus of ground, and the elastic rebound ratio were determined.

  • PDF

Development of Sprayable Strain-Hardening Cement Composite(SHCC) for Joint between Existing R/C Building and Seismic Retrofit Elements (기존 철근콘크리트 건물과 내진보강요소의 접합부 충진을 위한 뿜칠형 섬유보강 시멘트 복합체(SHCC)의 개발)

  • Kim, Sung-Ho;Youn, Gil-Ho;Kim, Yong-Cheol;Kim, Jae-Hwan;Yun, Hyun-Do
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.19 no.5
    • /
    • pp.29-36
    • /
    • 2012
  • The goals of this study are to develop a sprayable strain-hardening cement composite (SHCC) and to investigate the potential of the sprayable SHCC for packing the joint between existing R/C building and seismic retrofit elements. This paper provides the procedure for the development of a sprayable SHCC, test results of fresh properties required to a sprayable SHCC, and mock-up test results of developed sprayable SHCC. Control mixture of polyvinyl alcohol (PVA) fiber-reinforced SHCC (PVA-SHCC) was predetermined based on available research results. The pumpability and sprayability of the SHCC mixture were depended on the fluid property of fresh SHCC mixture. In this study, the effects of admixtures such as AE agent and fly ash on the rheological and rebound properties of control SHCC mixture were investigated to determine a sprayable SHCC mixture. Flow values and air content during shotcreting procedure of sprayable SHCC were also evaluated. The results show that flow or flowability and amount of air of three SHCC mixtures decreased almost linearly according to shotcreting procedure from mixer to nozzle. And the pumpability and sprayability of mixture with AE agent and low amounts of fly ash were superior to the those of SHCC. Mock-up test result show that developed sprayable SHCC indicates much improved workability and shotcrete construction period than conventional method(nonshrinkage mortar).