• 제목/요약/키워드: Rear axle position

검색결과 5건 처리시간 0.016초

의자차 뒷바퀴 축의 위치에 따른 의자차 추진력과 지구력 (The Force and Endurance During Wheelchair Propulsion by Three Different Rear Axle Positions)

  • 이미영;김수일
    • 한국전문물리치료학회지
    • /
    • 제10권2호
    • /
    • pp.1-10
    • /
    • 2003
  • This study was carried out to help the comprehensive rehabilitation of spinal cord injuries by measuring propulsion force and endurance exerted on wheelchair handrims, and predicting the differences among three different rear axle positions. The BTE (Baltimore Therapeutic Exerciser) work simulator was used on 9 paraplegia to test the force and endurance during wheelchair propulsion. The 141 large wheel of the BTE work simulator and a standard wheelchair with removed handrims were used for simulating wheelchair propulsion. The neurological and demographical characteristics of the patients were collected by personal interviews and direct examinations. The Kruskal-Wallis test was used to compare force and endurance among the groups. The strongest maximum isometric strength was produced when the rear axle of the wheelchair and the acromion process were on the same coronal plane. Although there were no significant differences statistically, moving the rear axle forward did result in greater isotonic strength. The research suggests that better functional activity of persons with paraplegia is possible when the rear axle of the wheelchair is appropriately adjusted.

  • PDF

Performance Improvement of the Horizontal Control System for a Tractor Implement Using Sensor Signal from the Front Axle

  • Ro, Young-Min;Moon, Jun-Hee;Kim, Kyeong Uk
    • Journal of Biosystems Engineering
    • /
    • 제41권2호
    • /
    • pp.67-74
    • /
    • 2016
  • Purpose: Many tractors have adopted the horizontal control system designed to maintain the three-point mounted implements in horizontal position when they are tilted sideways. The control system rotates the implement in the opposite direction to the inclination of rear axle of the tractor. However, the current control system was found to have poor performance in accuracy and response. A new control system was therefore developed to improve the performance. Methods: The new control system was designed to get the response of the implement to be started earlier by using the tilt information from the front axle of the tractor. By this approach, the rotation of the implement can be adjusted as required to make it horizontal at the expected time, even though the response is slow. The optimal values of the control parameters for the new system were determined by computer simulation and validated by a performance test conducted with an obstacle of 120 mm height on a flat concrete surface. The performance of the control system was evaluated by the root mean square error (RMSE) of the rotation angle of the implement with respect to the actual inclination of the rear axle. Results: The new control system reduced the RMSE of the current control system by 44.6% indicating a high performance improvement. The inclination of the front axle was easily obtained from a sensor mounted on the front axle of the tractor and used as input to the new control system. Conclusions: The method of getting the response of the implement to be started earlier by utilizing the inclination information of the front axle can be applied to improve the performance of the current control system at least cost.

DEVELOPMENT OF A PERSIMMON HARVESTING SYSTEM

  • Kim, S. M.;Park, S. J.;Kim, C. S.;Kim, M. H.;Lee, C. H.;J. Y. Rhee
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.II
    • /
    • pp.472-479
    • /
    • 2000
  • A persimmon harvesting vehicle that can be operated in hilly orchards as well as a manipulator that can be used to harvest persimmons located in remote positions in the trees were designed and developed. The vehicle could be operated with keeping balanced position in an inclined field and its working platform could be moved up and down easy to approach fruits in a remote region with the aids of a hydraulic and a electrical and electronics systems. The weight of the vehicle was 927 kg and the center of gravity was located at 427 mm to the inner side from the center of a right driving caterpillar, 607 mm to a rear axle from the center of a front axle, and 562 mm to upward from ground. The automatic level control sensor for leveling the working platform was activated within 14.5 ∼ 16.5 degrees of slope variation. The total length of the manipulator was 1.39 m and weight is 975 g. It was powered by a 12 V geared motor to detach persimmon fruits with a rotational force. The gripper was made of plastic and rubber to increase a frictional force. In a performance evaluation test, static tipping angle, dynamic tipping angle toward front side when the vehicle was moving downward, climbing angle, driving speed of the vehicle were measured or calculated. In persimmon harvesting tests 24.9% of yield was increased by hand picking with the aid of the vehicle and additional 7% of yield were increased when the manipulator was used. Therefore, 99010 of total possible yield was achievable when both of the vehicle and the manipulator were used for the manual persimmon harvesting. Increase in 22.5% of total yield was achieved with the manipulator only.

  • PDF

전기 자전거용 토크센서 개발 (The Development of Torque Sensor for Electric Bicycle)

  • 최성열;전용호;조황
    • 한국전자통신학회논문지
    • /
    • 제6권6호
    • /
    • pp.873-880
    • /
    • 2011
  • 최근 환경오염, 지구 온난화, 화석 연료 고갈 등이 범지구적 문제가 됨에 따라 녹색 에너지 기술 개발이 주목을 받고 있다. 이런 추세에 따라, 자전거가 다양한 스마트 에너지 기술과 결합하여 친환경 근거리 이동수단으로 발전하고 있다. 스마트 자전거 기술과 관련하여 많은 기술이 개발되고 있는데 이중 PAS(Power Assist System)는 사람의 힘과 전기의 힘을 효과적으로 결합하여 배터리로 구동되는 전기 모터를 제어하는 기술이다. 본 논문은 PAS를 구성하는 핵심 기술인 새로운 토크 센서를 제안한다. 이 기술은 기존 기술들과는 달리 자전거 뒤축에 스트레인 게이지를 부착하여 슬립링의 필요성을 없애고 사람에 의해 가해지는 구동축 토크를 측정 할 뿐 아니라, 현재 작동되는 기어의 위치를 근사적으로 추정 가능하게 한다.

CAD/CAE을 이용한 승용 Jeep의 Key-off시 진동 해석 (The vibration Analysis in Case of Key-off of a Jeep by Using CAD/CAE)

  • 안기원;송상기
    • 한국음향학회지
    • /
    • 제11권4호
    • /
    • pp.5-13
    • /
    • 1992
  • 엔진의 가진력으로 인해 발생되는 차량의 진동은 승차감에 큰 영향을 미치며, 또한 엔진 마운트 계의 동역학적 특성은 차량의 진동 및 소음에 직접적인 영향을 준다. 본 논문에서는 승용 지이프차의 엔진 key-off시 엔진 가진력으로 인한 차체 흔들림(body shake)을 실험을 통하여 측정함과 동시에 매카니즘해석 전용 프로그램인 DADS를 이용한 컴퓨터 시뮬레이션을 통하여 고찰하였다. 컴퓨터 시뮬레이션 모델은 엔진, 후레임이 포함된 차체, 앞 엑슬 그리고 뒤 엑슬로 구성되며, 각 엑슬은 좌우에 타이어를 고려하였다. 실험에서 얻은 차체 흔들림의 실험 결과와 컴퓨터 시뮬레이션한 결과를 비교 검토하였으며, 검증된 컴퓨터 시뮬레이션 모델을 통하여 엔진 마운트 고무의 강성, 엔진마운트의 설치각도 및 마운트 위치를 변경하여 key-off 시 자체 흔들림을 고찰함으로써 엔진 key-off 시의 차체 흔들림의 감소를 확인하였다.

  • PDF