• Title/Summary/Keyword: Rear Frame

Search Result 90, Processing Time 0.031 seconds

Structural Analysis of the Dual Thickness Laser Welded Frame (이종두께 레이저 용접 프레임의 구조해석)

  • 이영신;윤충섭;오재문
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.165-175
    • /
    • 1997
  • In this paper, the stress, buckling and vibration analyses have been performed for several case with the spot weld stiffened rear side frame, the unstiffened rear side frame and the dual thickness laser weld rear side frame. For stress and vibration analyses, the clamped boundary condition with spring supports are used. But for the buckling analyses, the both ends simply supported boundary conditions are used. For the nummerical analyses, ANSYS 5.0 code is adopted. Maximum stress of the spot weld stiffened rear side frame occurs in the main frame and is 80.9 MPa. Maximum strain is 501 .mu.. The maximum stress of the dual thickness laser weld rear side frame of 1.8mm thickness structure is equal with the stress of spot weld stiffened frame. The weight of dual thickness laser weld frame can be reduced about 17.2%. For the stiffened spot weld rear side frame with both ends simply supported boundary conditon, the bucking load is 52.54 kN. When the thickness of the dual thickness laser weld rear side frame become 1.9mm thickness structure, the buckling load of the stiffenerd rear side frame is equal to that of dual thickness laser weld frame. The reduction of the structure weight is about 5%. The fundamental natural frequency of the stiffened spot weld rear side frame for bending mode is 163.6 Hz and that of the dual thickness laser weld rear side frame is 179.8 Hz.

  • PDF

Light-weight Design of Automotive AA6061 Rear Sub-frame Based on CAE Simulation (CAE 해석을 이용한 자동차용 AA6061 리어 서브-프레임의 경량화 설계)

  • Kim, Kee-Joo;Lim, Jong-Han;Park, Jun-Hyub;Choi, Byung-Ik;Lee, Jae-Woong;Kim, Yoon-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.77-82
    • /
    • 2012
  • It is well known that the targeted fuel efficiency could only be achieved by more than 40% reduction of the vehicle weight through improved design and extensive utilization of lightweight materials. In order to obtain the goal of the weight reduction of automobiles, the researches about lighter and stronger rear sub-frame have been studied without sacrificing the safety of rear sub-frame. In this study, the weight reduction design process of rear sub-frame could be proposed based on the variation of von-Mises stress contour by substituting an AA6061 (aluminum 6061 alloy) having tensile strength of 310 MPa grade instead of SAPH440 steels. In addition, the stress ratio variations (stress over fatigue limit) of the rear sub-frame were examined and compared carefully. It could be reached that this approach method could be well established and be contributed for light-weight design guide and the optimum design conditions of the automotive rear sub-frame development.

A Study for Three-Dimensional Die Design of Automobile Rear Frame (자동차용 리어프레임의 3차원 금형설계에 관한 연구)

  • 정효상;이성수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.163-168
    • /
    • 2000
  • In this paper, a 3-D computer-aided die design process was developed for automobile rear frame with drawing, trimming, flanging, cam-piercing and piercing for tool design. The tool design has been done using Pro/Engineer on a personal computer. It is composed of four stations. The goal of this research is to apply each of stations for the standard tool specification to each station.

  • PDF

Analytical Study on the Effect of Forming Process on Springback of an Automobile Rear Frame (성형법에 따른 자동차 리어 프레임의 스프링백 해석대비)

  • Song Y. J.;Jung H. S.;Hahn Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.63-67
    • /
    • 2001
  • Springback after drawing and trimming is regarded as one of the most influential factors during forming structural frames since the part dimensions have dominant effect on assembly quality at later stages. In this study, analytical results were obtained from a commercial FEM package for an outer rear frame of an automobile. In terms of springback and twist the effect of forming process is compared and discussed between open and closed-ends forming

  • PDF

Stiffness and Fatigue Strength Analysis of Fuel Cell Vehicle Body Frame (연료전지차량 차체프레임 강성 및 내구해석)

  • Choi, Bok-Lok;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.47-53
    • /
    • 2011
  • Firstly, FEM model for the body frame of a fuel cell vehicle was built up and design optimization results based on different schemes were exhibited. One scheme was to minimize weight while maintaining the normal mode frequencies and the other was to increase the frequencies without weight change. Next, for a rear frame model, shape parameter study on collapse characteristics such as peak resistance load and absorbed energy was carried out. Also, the stiffness of frame mounting brackets was predicted using inertance calculation and the durability of those mounting brackets for vehicle system loads was evaluated. Finally, for a representative mounting model, the influence on durability due to thickness change was analyzed.

Hydro-forming Process of Automotive Rear Sub-frame by Computer Simulation (CAE) (컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 리어 서브-프레임의 하이드로-포밍 공정 개발)

  • Kim, Kee-Joo;Sung, Chang-Won;Baik, Young-Nam;Lee, Yong-Heon;Bae, Tae-Sung;Sohn, Il-Seon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.38-43
    • /
    • 2008
  • The hydroforming technology has been spreaded dramatically in automotive industry last 10 years. Itmay cause many advantages to automotive applications in terms of better structural integrity of the parts, lower cost from fewer part count, material saving, weight reduction, lower springback, improved strength and durability and design flexibility. In this study, the whole process of rear sub-frame parts development by tube hydroforming using steel material having tensile strength of 440MPa grade is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Design) to confirm hydroformability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape in automotive rear sub-frame by hydroforming process were carefully investigated. Overall possibility of hydroformable sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending, preforming and hydroforming. In addition, all the components of prototyping tool are designed and interference with press is examined from the point of geometry and thinning.

A Study on the Neck Injury in Low Speed Rear Impact through the Real Car Test (실차시험을 통한 저속 추돌시 목상해 연구)

  • JO, H.C.;PARK, I.S.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • The neck injury occupies the most of injury that happened by the rear impact car accident. This study was analyzed about influence of the neck injury in low speed rear impact and car crash accident investigation. There is no neck injury in low speed side rear impact. On the other hand, there is initial neck injury symptom of 10 % but no long-term neck injury symptom in low speed offset rear impact. It appeared that the possibility of neck injury in low speed rear impact is low. For the more study about the neck injury, it should be evaluate the effects of the car body structure, frame structure and rear crash pattern.

A Study on the Characteristics of springback about an automobile rear side frame (자동차 리어사이드 프레임에 대한 스프링백 특성연구)

  • 신용승
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.57-61
    • /
    • 1999
  • Springback after forming is the critical factor affecting the product quality. It is very difficult to predict the amount of springback not only because of complex geometry and material characteristics of the stamping product but because the methodology has not been established. In this study springback mechanism is introduced and experimental tryout and computer simulation are carried out for die design of automotive rear side frame. Futher springback was verified by comparing the result of computer simulation with the measured tryout result.

  • PDF

Variable Configuration Tracked Mobile Robot for Demining Operations (지뢰제거작업을 위한 가변 형상 무한궤도형 주행 로봇)

  • Jeong, Hae-Kwan;Kim, Sang-Do;Lee, Cheong-Hee;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.804-809
    • /
    • 2004
  • This paper introduces a link-type tracked vehicle which is developed for demining operations. The vehicle consists of three parts - front frame, rear frame and body. The front frame is connected to the rear frame by a rotational passive adaptation mechanism which is a driving mechanism of the vehicle. Additionally, the demining system which is adaptable to mobile robot is developed to clear small Anti-Personnel(AP) mines with inexplosive method. In other words, assembled rakes unearth mines by their opposite rotation to the direction of the robot. Finally, the motions of demining rakes and design parameters of the demining system are analyzed.

  • PDF