• Title/Summary/Keyword: Reanalysis

Search Result 370, Processing Time 0.028 seconds

Optimization of Steel Box Girder Bridges using Approximate Reanalysis Technique (재해석 기법을 이용한 강상자형교의 최적설계)

  • Min, Dae-Hong;Yoon, Woo-Hyun;Chung, Jee-Seung;Yang, Sung-Don
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.80-86
    • /
    • 2011
  • Structural optimization algorithm of steel box girder bridges using improved higher-order approximate reanalysis technique is proposed in this paper. The proposed approximation method is a generalization of the convex approximation method. The order of the approximate reanalysis for each function is analytically adjusted in the optimization process. This self-adjusted capability makes the approximate structural analysis values conservative enough to maintain the optimum design point of the approximate problem. The efficiency of proposed optimazation algorithm, compared with conventional algorithm, is successfully demonstrated in the steel box girder bridges. The efficiency and robustness of proposed algorithm is also demonstrated in practical steel box girder bridges.

Structural modal reanalysis using automated matrix permutation and substructuring

  • Boo, Seung-Hwan
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.105-120
    • /
    • 2019
  • In this paper, a new efficient method for structural modal reanalysis is proposed, which can handle large finite element (FE) models requiring frequent design modifications. The global FE model is divided into a residual part not to be modified and a target part to be modified. Then, an automated matrix permutation and substructuring algorithm is applied to these parts independently. The reduced model for the residual part is calculated and saved in the initial analysis, and the target part is reduced repeatedly, whenever design modifications occur. Then, the reduced model for the target part is assembled with that of the residual part already saved; thus, the final reduced model corresponding to the new design is obtained easily and rapidly. Here, the formulation of the proposed method is derived in detail, and its computational efficiency and reanalysis ability are demonstrated through several engineering problems, including a topological modification.

Accuracy evaluation of near-surface air temperature from ERA-Interim reanalysis and satellite-based data according to elevation

  • Ryu, Jae-Hyun;Han, Kyung-Soo;Park, Eun-Bin
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.595-600
    • /
    • 2013
  • In order to spatially interpolate the near-surface temperature (Ta) values, satellite and reanalysis methods were used from previous studies. Accuracy of reanalysis Ta was generally better than that of satellite-based Ta, but spatial resolution of reanalysis Ta was large to use at local scale studies. Our purpose is to evaluate accuracy of reanalysis Ta and satellite-based Ta according to elevation from April 2011 to March 2012 in Northeast Asia that includes various topographic features. In this study, we used reanalysis data that is ERA-Interim produced by European Centre for Medium-Range Weather Forecasts (ECMWF), and estimated satellite-based Ta using Digital Elevation Meter (DEM), Normalized Difference Vegetation Index (NDVI), difference between brightness temperature of $11{\mu}m$ and $12{\mu}m$, and Land Surface Temperature (LST) data. The DEM data was used as auxiliary data, and observed Ta at 470 meteorological stations was used in order to evaluate accuracy. We confirmed that the accuracy of satellite-based Ta was less accurate than that of ERA-Interim Ta for total data. Results of analyzing according to elevation that was divided nine cases, ERA-Interim Ta showed higher accurate than satellite-based Ta at the low elevation (less than 500 m). However, satellite-based Ta was more accurate than ERA-Interim Ta at the higher elevation from 500 to 3500 m. Also, the width of the upper and lower quartile appeared largely from 2500 to 3500 m. It is clear from these results that ERA-Interim Ta do not consider elevation because of large spatial resolution. Therefore, satellite-based Ta was more effective than ERA-Interim Ta in the regions that is range from 500 m to 3500 m, and satellite-based Ta was recommended at a region of above 2500 m.

Uncertainty Estimation of Single-Channel Temperature Estimation Algorithm for Atmospheric Conditions in the Seas around the Korean Peninsula (한반도 주변해역 대기환경에 대한 싱글채널 온도추정 알고리즘의 불확도 추정)

  • Jong Hyuk Lee;Kyung Woong Kang;Seungil Baek;Wonkook Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.355-361
    • /
    • 2023
  • Temperature of the Earth's surface is a crucial physical variable in understanding weather and atmospheric dynamics and in coping with extreme heat events that have a great impact on living organismsincluding humans. Thermalsensors on satellites have been a useful meansfor acquiring surface temperature information for wide areas on the globe, and thus characterization of its estimation uncertainty is of central importance for the utilization of the data. Among various factors that affect the estimation, the uncertainty caused by the algorithm itself has not been tested for the atmospheric environment of Korean vicinity. Thisstudy derivesthe uncertainty of the single-channel algorithm under the local atmospheric and oceanic conditions by using reanalysis data and buoy temperature data collected around Korea. Atmospheric profiles were retrieved from two types of reanalysis data, the fifth generation of European Centre for Medium-Range Weather Forecasts reanalysis of the global climate and weather (ERA5) and Modern-Era Retrospective analysis for Research and Applications-2 (MERRA-2) to investigate the effect of reanalysis data. MODerate resolution atmospheric TRANsmission (MODTRAN) was used as a radiative transfer code for simulating top of atmosphere radiance and the atmospheric correction for the temperature estimation. Water temperatures used for MODTRAN simulations and uncertainty estimation for the single-channel algorithm were obtained from marine weather buoyslocated in seas around the Korean Peninsula. Experiment results showed that the uncertainty of the algorithm varies by the water vapor contents in the atmosphere and is around 0.35K in the driest atmosphere and 0.46K in overall, regardless of the reanalysis data type. The uncertainty increased roughly in a linear manner as total precipitable water increased.

Global Distribution of Surface Layer Wind Speed for the years 2000-2009 Based on the NCEP Reanalysis (NCEP 재분석 자료를 이용한 전지구 지표층의 2000-2009년 풍속 분포)

  • Byon, Jae-Young;Choi, Young-Jean;Lee, Jae-Won
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.439-446
    • /
    • 2011
  • NCEP reanalysis data were analyzed in order to provide distribution of global wind resource and wind speed in the surface layer for the years 2000-2009. Wind speed at 10 m above ground level (AGL) was converted to wind speed at 80 m above the ground level using the power law. The global average 80 m wind speed shows a maximum value of $13ms^{-1}$ at the storm track region. High wind speed over the land exists in Tibet, Mongolia, Central North America, South Africa, Australia, and Argentina. Wind speed over the ocean increased with a large value in the South China Sea, Southeast Asia, East Sea of the Korea. Sea surface wind in Western Europe and Scandinavia are suitable for wind farm with a value of $7-8ms^{-1}$. Areas with great potential for wind farm are also found in Eastern and Western coastal region of North America. Sea surface wind in Southern Hemisphere shows larger values in the high latitude of South America, South Africa and Australia. The distribution of low-resolution reanalysis data represents general potential areas for wind power and can be used to provide information for high-resolution wind resource mapping.

A Feasibility Study on Annual Energy Production of the Offshore Wind Farm using MERRA Reanalysis Data (해상풍력발전단지 연간발전량 예측을 위한 MERRA 재해석 데이터 적용 타당성 연구)

  • Song, Yuan;Kim, Hyungyu;Byeon, Junho;Paek, Insu;Yoo, Neungsoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.33-41
    • /
    • 2015
  • A feasibility study to estimate annual energy production of an offshore wind farm was performed using MERRA reanalysis data. Two well known commercial codes commonly used to wind farm design and power prediction were used. Three years of MERRA data were used to predict annual energy predictions of the offshore wind farm close to Copenhagen from 2011 to 2013. The availability of the wind farm was calculated from the power output data available online. It was found from the study that the MERRA reanalysis data with commercial codes could be used to fairly accurately predict the annual energy production from offshore wind farms when a meteorological mast is not available.

Wind Resource Assessment on the Western Offshore of Korea Using MERRA Reanalysis Data (MERRA 재해석자료를 이용한 서해상 풍력자원평가)

  • Kim, Hyun-Goo;Jang, Moon-Seok;Ryu, Ki-Wahn
    • Journal of Wind Energy
    • /
    • v.4 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • Massive offshore wind projects of have recently been driven in full gear on the Western Offshore of Korea including the 2.5 GW West-Southern Offshore Wind Project of the Ministry of Trade, Industry and Energy, and the 5 GW Offshore Wind Project of the Jeollanamdo Provincial Government. On this timely occasion, this study performed a general wind resource assessment on the Western Offshore by using the MERRA reanalysis data of temporal-spatial resolution and accuracy greatly improved comparing to conventional reanalysis data. It is hard to consider that wind resources on the Western Sea are excellent, since analysis results indicated the average wind speed of 6.29 ± 0.39 m/s at 50 m above sea level, and average wind power density of 307 ± 53 W/m2. Therefore, it is considered that activities shall be performed for guarantee economic profits from factor other than wind resources when developing an offshore wind project on the Western Offshore.

Intercomparison of the Global Ocean Reanalysis Data (전지구 해양 재분석 자료 비교 분석)

  • Chang, You-Soon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.2
    • /
    • pp.102-118
    • /
    • 2015
  • This study summarized the results of the international ocean reanalysis intercomparison project. We introduced the characteristics of various ocean reanalysis systems and analyzed the assimilated performance on the typical eight oceanic variables (heat content, steric height, sea level, surface heat fluxes, mixed layer depth, subsurface salinity, depth of $20^{\circ}C$ isotherm, sea ice). In general, ensemble means show better estimations than those of any individual ocean reanalysis, but it depends on analyzed regions and variables. Among the eight oceanic variables, salinity and sea ice variabilities have large spreads among models. The deep sea, Southern Ocean, and coastal regions including western boundary current commonly appear as the areas with largest uncertainty between different objective analyses and assimilation models. We expect that intercomparison project for the ocean assimilation models independently operated in Korea should be processed, which allows us to join relevant international programs in the near future.

Trends of Upper Jet Streams Characteristics (Intensity, Altitude, Latitude and Longitude) Over the Asia-North Pacific Region Based on Four Reanalysis Datasets (재분석자료들을 활용한 아시아-북태평양 상층제트의 강도(풍속) 및 3차원적 위치 변화 경향)

  • So, Eun-Mi;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.1-16
    • /
    • 2017
  • In this study, trends of upper jet stream characteristics (intensity, altitude, latitude, and longitude) over the Asia-North Pacific region during the recent 30 (1979~2008) years were analyzed by using four reanalysis datasets (CFSR, ERA-Int., JRA-55, MERRA). We defined the characteristics of upper jet stream as the averages of mass weighted wind speed, mass-flux weighted altitude, latitude and longitude between 400 and 100 hPa. Due to the vertical averaging of jet stream characteristics, our results reveal a weaker spatial variabilities and trends than previous studies. In general, the four reanalysis datasets show similar jet stream properties (intensity, altitude, latitude and longitude) although the magnitude and trends are slightly different among the reanalysis datasets. The altitude of MERRA is slightly higher than that of others for all seasons. The domain averaged intensity shows a weakening trend except for winter and the altitude of jet stream shows an increasing trend for all seasons. Also, the meridional trend of jet core shows a poleward trend for all seasons but it shows a contrasting trend, poleward trend in the continental area but equatorward trend in the Western Pacific region during summer. The zonal trend of jet core is very weak but a relatively strong westward trend in jet core except for spring and winter. The trends of jet stream characteristics found in this study are thermodynamically consistent with the global warming trends observed in the Asia-Pacific region.

Structural Optimization by Global-Local Approximations Structural Reanalysis based on Substructuring (부구조화 기반 전역-부분 근사화 구조재해석에 의한 구조최적화)

  • 김태봉;서상구;김창운
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.120-131
    • /
    • 1997
  • This paper presents an approximate reanalysis methods of structures based on substructuring for an effective optimization of large-scale structural systems. In most optimal design procedures the analysis of the structure must be repeated many times. In particular, one of the main obstacles in the optimization of structural systems are involved high computational cost and expended long time in the optimization of large-scale structures. The purpose of this paper is to evaluate efficiently the structural behavior of new designs using information from previous ones, without solving basic equations for successive modification in the optimal design. The proposed reanalysis procedure is combined Taylor series expansions which is a local approximation and reduced basis method which is a global approximation based on substructuring. This technique is to choose each of the terms of Taylor series expansions as the basis vector of reduced basis method in substructuring system which is one of the most effective analysis of large -scale structures. Several numerical examples illustrate the effectiveness of the solution process.

  • PDF