• Title/Summary/Keyword: Realtime Services

Search Result 145, Processing Time 0.021 seconds

Exosome-mediated delivery of gga-miR-20a-5p regulates immune response of chicken macrophages by targeting IFNGR2, MAPK1, MAP3K5, and MAP3K14

  • Yeojin Hong;Jubi Heo;Suyeon Kang;Thi Hao Vu;Hyun S. Lillehoj;Yeong Ho Hong
    • Animal Bioscience
    • /
    • v.36 no.6
    • /
    • pp.851-860
    • /
    • 2023
  • Objective: This study aims to evaluate the target genes of gga-miR-20a-5p and the regulated immune responses in the chicken macrophage cell line, HD11, by the exosome-mediated delivery of miR-20a-5p. Methods: Exosomes were purified from the chicken macrophage cell line HD11. Then, mimic gga-miR-20p or negative control miRNA were internalized into HD11 exosomes. HD11 cells were transfected with gga-miR-20a-5p or negative control miRNA containing exosomes. After 44 h of transfection, cells were incubated with or without 5 ㎍/mL poly(I:C) for 4 h. Then, expression of target genes and cytokines was evaluated by quantitative realtime polymerase chain reaction. Results: Using a luciferase reporter assay, we identified that gga-miR-20a-5p directly targeted interferon gamma receptor 2 (IFNGR2), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase kinase kinase 5 (MAP3K5), and mitogen-activated protein kinase kinase kinase 14 (MAP3K14). Moreover, the exosome-mediated delivery of gga-miR-20a-5p successfully repressed the expression of IFNGR2, MAPK1, MAP3K5, and MAP3K14 in HD11 cells. The expressions of interferon-stimulated genes (MX dynamin like GTPase 1 [MX1], eukaryotic translation initiation factor 2A [EIF2A], and oligoadenylate synthase-like [OASL]) and proinflammatory cytokines (interferon-gamma [IFNG], interleukin-1 beta [IL1B], and tumor necrosis factor-alpha [TNFA]) were also downregulated by exosomal miR-20a-5p. In addition, the proliferation of HD11 cells was increased by exosomal miR-20a-5p. Conclusion: The exosome-mediated delivery of gga-miR-20a-5p regulated immune responses by controlling the MAPK and apoptotic signaling pathways. Furthermore, we expected that exosomal miR-20a-5p could maintain immune homeostasis against highly pathogenic avian influenza virus H5N1 infection by regulating the expression of proinflammatory cytokines and cell death.

Implementation of Security Information and Event Management for Realtime Anomaly Detection and Visualization (실시간 이상 행위 탐지 및 시각화 작업을 위한 보안 정보 관리 시스템 구현)

  • Kim, Nam Gyun;Park, Sang Seon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.5
    • /
    • pp.303-314
    • /
    • 2018
  • In the past few years, government agencies and corporations have succumbed to stealthy, tailored cyberattacks designed to exploit vulnerabilities, disrupt operations and steal valuable information. Security Information and Event Management (SIEM) is useful tool for cyberattacks. SIEM solutions are available in the market but they are too expensive and difficult to use. Then we implemented basic SIEM functions to research and development for future security solutions. We focus on collection, aggregation and analysis of real-time logs from host. This tool allows parsing and search of log data for forensics. Beyond just log management it uses intrusion detection and prioritize of security events inform and support alerting to user. We select Elastic Stack to process and visualization of these security informations. Elastic Stack is a very useful tool for finding information from large data, identifying correlations and creating rich visualizations for monitoring. We suggested using vulnerability check results on our SIEM. We have attacked to the host and got real time user activity for monitoring, alerting and security auditing based this security information management.

A Study on Method of Framework Data Update and Computing Land Change Ratio using UFID (UFID를 이용한 기본지리정보 갱신 및 지형변화율 산출 방안 연구)

  • Kim, Ju Han;Kim, Byung Guk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.157-167
    • /
    • 2006
  • During the first and second NGIS projects by the Korean government, The first one (1995~2000) was limited on constructing geographic information and the second (2001~2005) was focused on circulation and practical use of geoinformation from the result of the first project. In the latter half of 2nd NGIS project, However, the geographic information from the NGIS projects have not been renewed even though there were significant geographical changes. The accurate renewal of geoinformation is a matter of great importance to the next generation industry (e.g. LBS, Ubiquitous, Telematics). In this respect, it is time to update the geographic information in the latter half of the second NGIS project. Therefore, It is not only important to build an accurate geoinformation but also rapid and correct renewal of the geoinformation. NGII (National Geographic Information Institute) has been studying for improvement of digital map that was constructed by the result of the 1st NGIS project. Through the construction of clean digital map, NGII constructed Framework Data to three kinds of formats (NGI, NDA, NRL). Framework Data was contained to other database, and provided the reference system of location or contents for combining geoinformation. Framework Data is consist of Data Set, Data Model and UFID (Unique Feature Identifier). It will be achieved as national infrastructure data. This paper attempts to explore a method of the update to practical framework data with realtime geoinformation on feature's creation, modification and destruction managed by 'Feature management agency' using UFID's process. Furthermore, it suggests a method which can provide important data in order to plan the Framework update with the land change ratio.

Study on Advisory Safety Speed Model Using Real-time Vehicular Data (실시간 차량정보를 이용한 안전권고속도 산정방안에 관한 연구)

  • Jang, JeongAh;Kim, HyunSuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.443-451
    • /
    • 2010
  • This paper proposes the methodology about advisory safety speed based on real-time vehicular data collected from highway. The proposed model is useful information to drivers by appling seamless wireless communication and being collected from ECU(Engine Control Unit) equipment in every vehicle. Furthermore, this model also permits the use of realtime sensing data like as adverse weather and road-surface data. Here, the advisory safety speed is defined "the safety speed for drivers considering the time-dependent traffic condition and road-surface state parameter at uniform section", and the advisory safety speed model is developed by considering the parameters: inter-vehicles safe stopping distance, statistical vehicle speed, and real-time road-surface data. This model is evaluated by using the simulation technique for exploring the relationships between advisory safety speed and the dependent parameters like as traffic parameters(smooth condition and traffic jam), incident parameters(no-accident and accident) and road-surface parameters(dry, wet, snow). A simulation's results based on 12 scenarios show significant relationships and trends between 3 parameters and advisory safety speed. This model suggests that the advisory safety speed has more higher than average travel speed and is changeable by changing real-time incident states and road-surface states. The purpose of the research is to prove the new safety related services which are applicable in SMART Highway as traffic and IT convergence technology.

Implementation of integrated monitoring system for trace and path prediction of infectious disease (전염병의 경로 추적 및 예측을 위한 통합 정보 시스템 구현)

  • Kim, Eungyeong;Lee, Seok;Byun, Young Tae;Lee, Hyuk-Jae;Lee, Taikjin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • The incidence of globally infectious and pathogenic diseases such as H1N1 (swine flu) and Avian Influenza (AI) has recently increased. An infectious disease is a pathogen-caused disease, which can be passed from the infected person to the susceptible host. Pathogens of infectious diseases, which are bacillus, spirochaeta, rickettsia, virus, fungus, and parasite, etc., cause various symptoms such as respiratory disease, gastrointestinal disease, liver disease, and acute febrile illness. They can be spread through various means such as food, water, insect, breathing and contact with other persons. Recently, most countries around the world use a mathematical model to predict and prepare for the spread of infectious diseases. In a modern society, however, infectious diseases are spread in a fast and complicated manner because of rapid development of transportation (both ground and underground). Therefore, we do not have enough time to predict the fast spreading and complicated infectious diseases. Therefore, new system, which can prevent the spread of infectious diseases by predicting its pathway, needs to be developed. In this study, to solve this kind of problem, an integrated monitoring system, which can track and predict the pathway of infectious diseases for its realtime monitoring and control, is developed. This system is implemented based on the conventional mathematical model called by 'Susceptible-Infectious-Recovered (SIR) Model.' The proposed model has characteristics that both inter- and intra-city modes of transportation to express interpersonal contact (i.e., migration flow) are considered. They include the means of transportation such as bus, train, car and airplane. Also, modified real data according to the geographical characteristics of Korea are employed to reflect realistic circumstances of possible disease spreading in Korea. We can predict where and when vaccination needs to be performed by parameters control in this model. The simulation includes several assumptions and scenarios. Using the data of Statistics Korea, five major cities, which are assumed to have the most population migration have been chosen; Seoul, Incheon (Incheon International Airport), Gangneung, Pyeongchang and Wonju. It was assumed that the cities were connected in one network, and infectious disease was spread through denoted transportation methods only. In terms of traffic volume, daily traffic volume was obtained from Korean Statistical Information Service (KOSIS). In addition, the population of each city was acquired from Statistics Korea. Moreover, data on H1N1 (swine flu) were provided by Korea Centers for Disease Control and Prevention, and air transport statistics were obtained from Aeronautical Information Portal System. As mentioned above, daily traffic volume, population statistics, H1N1 (swine flu) and air transport statistics data have been adjusted in consideration of the current conditions in Korea and several realistic assumptions and scenarios. Three scenarios (occurrence of H1N1 in Incheon International Airport, not-vaccinated in all cities and vaccinated in Seoul and Pyeongchang respectively) were simulated, and the number of days taken for the number of the infected to reach its peak and proportion of Infectious (I) were compared. According to the simulation, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days when vaccination was not considered. In terms of the proportion of I, Seoul was the highest while Pyeongchang was the lowest. When they were vaccinated in Seoul, the number of days taken for the number of the infected to reach at its peak was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. When they were vaccinated in Pyeongchang, the number of days was the fastest in Seoul with 37 days and the slowest in Pyeongchang with 43 days. In terms of the proportion of I, Gangneung was the highest while Pyeongchang was the lowest. Based on the results above, it has been confirmed that H1N1, upon the first occurrence, is proportionally spread by the traffic volume in each city. Because the infection pathway is different by the traffic volume in each city, therefore, it is possible to come up with a preventive measurement against infectious disease by tracking and predicting its pathway through the analysis of traffic volume.