• Title/Summary/Keyword: Realizable $k-{\varepsilon}$

Search Result 51, Processing Time 0.022 seconds

RANS Computation of Turbulent free Surface Flow around a Self Propelled KLNG Carrier (LNG 운반선의 자유수면을 포함한 자항상태 난류유동장의 수치해석)

  • Kim, Jin;Park, Il-Ryong;Kim, Kwang-Soo;Van, Suak-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.583-592
    • /
    • 2005
  • The turbulent free surface flow around a self-propelled KRISO 138K LNG Carrier is numerically simulated using the finite volume based multi-block RANS code, WAVIS developed at HRISO. The realizable k-$\varepsilon$ turbulence model with a wail function is employed for the turbulence closure. The free surface is captured with the Level-Set method and body forces are used to model the effects of a propeller without resolving the detail blade flow. In order to obtain an accurate free surface solution and stable convergence, the computations are executed with a proper fine grid refinement around the free surface and with an adoption of implicit discretization scheme for the Level-Set formulation. The computed velocity vectors at the several stations and wave patterns show a good agreement with the experimental results measured at the KRISO towing tank.

Estimation of Resistance of Smart Harbor Crane Ship (Smart Harbor Crane Ship의 저항 추정)

  • Shin, Hyun-Kyoung;Kim, Min-Su;Jeong, Won-Jin;Ha, Yong-Hwak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • Recently, with increasing container ships' volume continuously, the conceptual design "Smart Harbor" of newly logistics processing system has been suggested. It is necessary to estimate resistance and horsepower for the selection of an appropriate propulsor at the initial design stage of Smart Harbor. In this study, CFD and the circulating water channel of the University of Ulsan are employed for estimating the resistance of the Smart Harbor Crane Ship with 1/100 scaled model. Two turbulent models are used. One is realizable k-${\varepsilon}$and the other is Reynolds stress turbulence model. In addition, the effects of the change in y+ and the number of meshes are considered during analysing.

Numerical Analysis on Velocity Fields around Seabed Tiller for the Improvement of Seabed Soil (해저 토질 개선을 위한 해저경운기 주변의 속도장에 대한 수치해석)

  • Kim, Jang-Kweon;Oh, Seok-Hyung;Kim, Jong-Beom;Chung, Sang-Ok
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.48-56
    • /
    • 2017
  • The steady-state, incompressible and three-dimensional numerical analysis was carried out to evaluate the velocity fields around the seabed tiller used for the improvement of the seabed soil and the pulling force and buoyancy generated by driving the seabed tiller. The turbulence model used in this study is a realizable $k-{\varepsilon}$ well known to be excellent for predicting the performance of the flow separation and recirculation flow as well as the boundary layer with rotation and strong back pressure gradient. As a results, a typical vortex pair appears near the adjacent rotor vane tip. When the current is stopped, there is no force when pulling the seabed tiller, but when the current flows at 1.2 knots, the force acts on the downstream side and the pulling force is much greater. In stationary currents, the buoyancy of the seabed tiller acts more strongly towards the seabed as the number of rotations of the rotor increases, but acts more strongly toward the sea surface at 1.2 knots of current.

RANS Simulations for KRISO Container Ship and VLCC Tanker (KRISO 컨테이너 및 VLCC선형에 대한 RANS 시뮬레이션)

  • Kim, Jin;Park, Il-Ryong;Kim, Kwang-Soo;Van, Suak-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.593-600
    • /
    • 2005
  • The finite volume based multi-block RANS code, WAVIS developed at KRISO, is used to simulate the turbulent flow field around the KRISO container ship (KCS) and the modified KRISO tanker (KVLCC2M). The realizable k-$\varepsilon$ turbulence model with a wall function is employed for the turbulence closure. The free surface flow with and without propeller is mainly investigated for the KCS and the double model flow is concerned for the KVLCC2M which is obliquely towed in still water. The computed results are compared with the experimental data provided by CFD Tokyo Workshop 2005 in terms of wave profiles, hull surface pressure and wake distribution with and without propeller for the HCS and wake distribution and hydrodynamic forces and moments with various drift angles for the KVLCC2M.

Calculation of Turbulent Flows around a Submarine for the Prediction of Hydrodynamic Performance

  • Kim, Jin;Park, Il-Ryong;Van, Suak-Ho;Kim, Wu-Joan
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.4
    • /
    • pp.16-31
    • /
    • 2003
  • The finite volume based multi-block RANS code, WAVIS developed at KRISO, is used to simulate the turbulent flows around a submarine with the realizable $\textsc{k}-\varepsilon$ turbulence model. RANS methods are verified and validated at the level of validation uncertainty 1.54% of the stagnation pressure coefficient for the solution of the turbulent flows around SUBOFF submarine model without appendages. Another SUBOFF configuration, axisymmetric body with four identical stem appendages, is also computed and validated with the experimental data of the nominal wake and hydrodynamic coefficients. The hydrodynamic forces and moments for SUBOFF model and a practical submarine are predicted at several drift and pitch angles. The computed results are in extremely good agreement with experimental data. Furthermore, it is noteworthy that all the computations at the present study were carried out in a PC and the CPU time required for 2.8 million grids was about 20 hours to get fully converged solution. The current study shows that CFD can be a very useful and cost effective tool for the prediction of the hydrodynamic performance of a submarine in the basic design stage.

Numerical Analysis on the Flow Field around Tiller Rotor for Soil Improvement in Coastal Fisheries (연안어장의 토질 개선을 위한 경운기 로터 주변의 유동장에 대한 수치해석)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.20-28
    • /
    • 2017
  • The steady-state, incompressible and three-dimensional numerical analysis was performed to investigate the flow fields around the seabed tiller used for soil improvement in coastal fisheries and the pulling force and buoyancy generated by tiller operation. The turbulence model used in this study is a realizable $k-{\varepsilon}$. As a results, at a stationary current or a current speed of 1.2 knots, where rotor rotates in a clockwise direction, a typical vortex pair appears near the tip of the rotor except for the edge, and the strength of the vortex pair increases with the number of revolutions of the rotor. The pulling force of the tiller rotating in the counterclockwise direction increases with the number of revolutions. Also, when the current flows at 1.2 knots and the rotor rotates clockwise, the pulling force of the tiller acts on the upstream side irrespective of the number of rotations of the rotor, so that no force is applied. The buoyancy of the tiller acts on the seawater surface if the flow direction inside the rotor is the same as the direction of rotation of the rotor, regardless of the current velocity, otherwise it acts on the seabed.

Analysis of Resistance Performance of Modern Commercial Ship Hull Form using a Level-Set Method (Level-Set법을 이용한 일반상선의 저항성능 해석)

  • Park, Il-Ryong;Kim, Jin;Van, Suak-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.79-89
    • /
    • 2004
  • The viscous free surface flow around KRISO container ship (KCS) is computed using the finite volume based multi block RANS code, WAVIS developed at KRISO. The free surface is captured with the Level-Set method and the realizable k-$\varepsilon$ model is employed for turbulence closure. The computations are carried out at model scale. For accurate free surface solution and its stable convergence the computations are performed with a suitable grid refinement around the free surface by applying an implicit discretization method based on a finite volume method to the Level-Set formulation. In all computational cases the numerical results agree well with experimental measurements.

A CFD Study of Roadside Barrier Impact on the Dispersion of Road Air Pollution

  • Jeong, Sang Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.22-30
    • /
    • 2015
  • This study evaluated road shape and roadside barrier impact on near-road air pollution dispersion using FLUENT computational fluid dynamics (CFD) model. Simulated road shapes are three types, namely at-grade, depressed, and filled road. The realizable k-${\varepsilon}$ model in FLUENT CFD code was used to simulate the flow and dispersion around road. The selected concentration profile results were compared with the wind tunnel experiments. The overall concentration profile results show good agreement with the wind tunnel results. The results showed that noise barriers, which positioned around the at-grade road, decrease the horizontal impact distance (In this study, the impact distance was defined as the distance from road surface origin coordinate to the position whose mass fraction is 0.1.) lower 0.33~0.65 times and change the vertical air pollution impact distance larger 2.0~2.27 times than those of no barrier case. In case of filled road, noise barriers decrease the horizontal impact distance lower 0.24~0.65 times and change the vertical air pollution impact distance larger 3.33~3.55 times than those of no barrier case. The depressed road increase 1.53~1.68 times the vertical air pollution impact distance. It contributes the decrease of horizontal air pollution impact distance 0.32~0.60 times compare with no barrier case.

STUDY ON THE HYDRAULIC DESIGN OF 2 STAGE MIXED FLOW PUMP (2단 사류펌프의 임펠러 성능향상 방안 연구)

  • Kim, Y.J.;Woo, N.S.;Kwon, J.K.;Chung, S.K.;Park, U.S.;Bae, S.E.;Park, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.556-560
    • /
    • 2011
  • The seawater lift pump system is responsible for maintaining the open canal level to provide the suction flow of circulating water pump at the set point. The objective of this paper is to design a 2-stage mixed flow pump(for seawater lifting) by inverse design and to evaluate the overall performance and the local flow fields of the pump by using a commercial CFD code. Rotating speed of the impeller is 1,750 rpm with the flow rate of 2,700 $m^3/h$. Finite volume method with structured mesh and Realizable ${\kappa}-{\varepsilon}$ turbulent model is used to guaranty more accurate prediction of turbulent flow in the pump impeller. The numerical results such as static head brake horse power and efficiency of the mixed flow pump are compared with the reference data. Also, the periodic condition calculation method for the mixed flow pump was carried out in order to investigate the pump performance characteristics with the modification of impeller geometry.

  • PDF

Numerical Analysis on the Internal Flow Field Characteristics of Wind Tunnel Contractions with Morel's Equation (모렐 식을 갖는 풍동수축부의 내부유동장 특성에 대한 수치해석)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.11-17
    • /
    • 2018
  • The steady-state, incompressible and three-dimensional numerical analysis was carried out to evaluate the internal flow fields characteristics of wind tunnel contractions made by Morel's curve equations. The turbulence model used in this study is a realizable ${\kappa}-{\varepsilon}$ well known to be excellent for predicting the performance of the flow separation and recirculation flow as well as the boundary layer with rotation and strong back pressure gradient. As a results, when the flow passes through the interior space of the analytical models, the flow resistance at the inlet of the plenum chamber is the largest at $Z_m=300$, 400 mm, but the smallest at $Z_m=700mm$. The maximum turbulence intensity in the test section is about 2.5% when calculated by the homogeneous flow, so it is improved by about 75% compared to the 10% turbulence intensity at the inlet of the plenum chamber due to the contraction.