• Title/Summary/Keyword: Real-time systems

Search Result 6,609, Processing Time 0.037 seconds

Enhancing E-commerce Security: A Comprehensive Approach to Real-Time Fraud Detection

  • Sara Alqethami;Badriah Almutanni;Walla Aleidarousr
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.1-10
    • /
    • 2024
  • In the era of big data, the growth of e-commerce transactions brings forth both opportunities and risks, including the threat of data theft and fraud. To address these challenges, an automated real-time fraud detection system leveraging machine learning was developed. Four algorithms (Decision Tree, Naïve Bayes, XGBoost, and Neural Network) underwent comparison using a dataset from a clothing website that encompassed both legitimate and fraudulent transactions. The dataset exhibited an imbalance, with 9.3% representing fraud and 90.07% legitimate transactions. Performance evaluation metrics, including Recall, Precision, F1 Score, and AUC ROC, were employed to assess the effectiveness of each algorithm. XGBoost emerged as the top-performing model, achieving an impressive accuracy score of 95.85%. The proposed system proves to be a robust defense mechanism against fraudulent activities in e-commerce, thereby enhancing security and instilling trust in online transactions.

Real-Time Vital Sign Information System Implementation uisng TMO(Time-Triggered and Message-Triggered Object) (시간구동 및 메시지 구동 객체를 이용한 실시간 생체정보 시스템 구현)

  • Kim, Chun-Suk;Kim, Gwang-Jun;Jo, Ui-Ju
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.6
    • /
    • pp.678-685
    • /
    • 2010
  • One of the computer application fields which started showing noticeable new growth trends in recent years is the real time communication distributed computing application field. Object-oriented(OO) real time(RT) distributed computing is a form of real-time distributed computing realized with a distributed computer system structured in the form of an object network. In this paper, we describes the application environment as the patient monitor telemedicine system with TMO structure. Vital sign information web viewer systems is also the standard protocol for medical image and transfer. In order to embrace new technologies as telemedicine service, it is important to develope the standard protocol between different systems in the hospital, as well as the communication with external hospital systems. We implemented integration patient monitor telemedicine system between vital sign web viewer systems and hospital information systems.

UbiFOS: A Small Real-Time Operating System for Embedded Systems

  • Ahn, Hee-Joong;Cho, Moon-Haeng;Jung, Myoung-Jo;Kim, Yong-Hee;Kim, Joo-Man;Lee, Cheol-Hoon
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.259-269
    • /
    • 2007
  • The ubiquitous flexible operating system (UbiFOS) is a real-time operating system designed for cost-conscious, low-power, small to medium-sized embedded systems such as cellular phones, MP3 players, and wearable computers. It offers efficient real-time operating system services like multi-task scheduling, memory management, inter-task communication and synchronization, and timers while keeping the kernel size to just a few to tens of kilobytes. For flexibility, UbiFOS uses various task scheduling policies such as cyclic time-slice (round-robin), priority-based preemption with round-robin, priority-based preemptive, and bitmap. When there are less than 64 tasks, bitmap scheduling is the best policy. The scheduling overhead is under 9 ${\mu}s$ on the ARM926EJ processor. UbiFOS also provides the flexibility for user to select from several inter-task communication techniques according to their applications. We ported UbiFOS on the ARM9-based DVD player (20 kB), the Calm16-based MP3 player (under 7 kB), and the ATmega128-based ubiquitous sensor node (under 6 kB). Also, we adopted the dynamic power management (DPM) scheme. Comparative experimental results show that UbiFOS could save energy up to 30% using DPM.

  • PDF

A Study on the Analysis of Performance for a Real-time Distributed Control System with Reliability (신뢰성 있는 실시간 분산제어 시스템의 성능분석에 관한 연구)

  • Kim, Nae-Jin;Park, In-Kap
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.270-277
    • /
    • 1998
  • As the network technologies advance, the control systems progress from a centralized architecture to a distributed one. However, these control systems were designed mostly based on the general-purpose operating systems(OS) and have many problems for assurance of a real-time property required for plant processing fields. Therefore, the control systems far a plant process upon real-time OS hare been increased gradually. In this paper, the real-time OS emphasizes on the realization of real-time processing capability, reliability of real-time response, and multi-processing functionality which are prerequisites for a distributed control system. And on the basis of this OS, the number of executable loop and logic, the functions of main plant processing, was analyzed and its validity was also evaluated. The system in this paper was designed not to effect on processing data while online, and the time spent on switching was measured.

  • PDF

Optimization Techniques for Power-Saving in Real-Time IoT Systems using Fast Storage Media (고속 스토리지를 이용한 실시간 IoT 시스템의 전력 절감 최적화 기술)

  • Yoon, Suji;Park, Heejin;Cho, Kyungwoon;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.71-76
    • /
    • 2021
  • Recently, as the size of IoT data grows, the memory power consumption of real-time systems increases rapidly. This is because real-time systems always place entire tasks in memory, which increases the demand of DRAM significantly. In this paper, we adopt emerging fast storage media and move a certain portion of real-time tasks from DRAM to storage. The part of tasks in storage are, then, loaded into memory when they are actually used. We incorporate our memory/storage power-saving into the dynamic voltage/frequency scaling of processors, thereby optimizing power consumptions in CPU and memory simultaneously. Specifically, the proposed technique aims at minimizing the CPU idle time and the DRAM memory size by determining appropriate voltage modes of CPU and the swap ratio of memory, without violating the deadlines of all tasks. Through simulation experiments, we show that the proposed technique significantly reduces the power consumption of real-time systems.

Robust Data, Event, and Privacy Services in Real-Time Embedded Sensor Network Systems (실시간 임베디드 센서 네트워크 시스템에서 강건한 데이터, 이벤트 및 프라이버시 서비스 기술)

  • Jung, Kang-Soo;Kapitanova, Krasimira;Son, Sang-H.;Park, Seog
    • Journal of KIISE:Databases
    • /
    • v.37 no.6
    • /
    • pp.324-332
    • /
    • 2010
  • The majority of event detection in real-time embedded sensor network systems is based on data fusion that uses noisy sensor data collected from complicated real-world environments. Current research has produced several excellent low-level mechanisms to collect sensor data and perform aggregation. However, solutions that enable these systems to provide real-time data processing using readings from heterogeneous sensors and subsequently detect complex events of interest in real-time fashion need further research. We are developing real-time event detection approaches which allow light-weight data fusion and do not require significant computing resources. Underlying the event detection framework is a collection of real-time monitoring and fusion mechanisms that are invoked upon the arrival of sensor data. The combination of these mechanisms and the framework has the potential to significantly improve the timeliness and reduce the resource requirements of embedded sensor networks. In addition to that, we discuss about a privacy that is foundation technique for trusted embedded sensor network system and explain anonymization technique to ensure privacy.

A Frozen Time Receding Horizon Control for a Linear Discrete Time-Varying System (선형 이산 시변시스템을 위한 고정시간 이동구간 제어)

  • Oh, Myung-Hwan;Oh, Jun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.140-144
    • /
    • 2010
  • In the case of a linear time-varying system, it is difficult to apply the conventional stability conditions of RHC (Receding Horizon Control) to real physical systems because of computational complexity comes from time-varying system and backward Riccati equation. Therefore, in this study, a frozen time RHC for a linear discrete time-varying system is proposed. Since the proposed control law is obtained by time-invariant Riccati equation solved by forward iterations at each control time, its stability can be ensured by matrix inequality condition and the stability condition based on horizon for a time-invariant system, and they can be applied to real physical systems effectively in comparison with the conventional RHC.

A Study on Implementation of a Real-Time Control Algorithm for Ship Main Engine Remote Control Systems (선박 주기관 원격제어시스템을 위한 실시간 제어알고리즘 구현에 관한 연구)

  • 김종화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.901-907
    • /
    • 1998
  • This paper presents a real-time control technique for the development of a ship main engine remote control system, In general several tasks are executed by the event-driven method in real-time system. However when some tasks have time delay components it is difficult to achieve good real-time performance. To cope with this problem a number of timers in most conventional system have been used. In this paper we introduce a real-time control methodology of dealing effectively with tasks including time delay components using one hardware timer. And also a speed control method of main engine which includes critical revolution range a crash astern and a emergency ahead function a switching method of remote control position and a flickering method for the indication of multi-stage alarm are discussed. As long as functions and method are imple-mented as forms of tasks the development of main engine remote control systems can be easy for different types of engines.

  • PDF

Real-time monitoring system of the legacy systems data -Focused on Manufacturing Shop Floor- (레거시 시스템 데이터의 실시간 모니터링 시스템 개발 -제조업 생산 현장을 중심으로-)

  • Lee, Jae-Ho;Nam, Ho-Ki;Yoo, Woo-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.1
    • /
    • pp.219-226
    • /
    • 2016
  • As the development environment is changing with the development of information communication technology, the systems that were used by each service became used with integration. In the process of integrating from existing legacy systems to new system, it should be smoothly integrated or shared, however, it cannot help holding existing technology or component due to significant cost burden for conversion. In this paper, it was not only classified by types with analyzing the various elements that make up legacy system but an approach and monitoring system were developed to each type. After System application results, data's information generated in each process is provided to other system in real time, so that it has not only secured the work efficiency and reliability but also it is made possible by integrating data in various formats for efficient data management, rapid search and tracking to history. With real-time monitoring system developed in this study, It can be very useful in a variety of industries which require real-time monitoring of distributed legacy system data.

Study on Real Time Sensor Monitoring Systems Based on Pulsed Laser for Microplastic Detection in Tap Water (펄스 레이저 기반 담수용 미세 플라스틱 실시간 센서 모니터링 시스템 연구)

  • Han, Seung Heon;Kim, Dae Geun;Jung, Haeng Yun;Kim, Seon Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.294-298
    • /
    • 2019
  • Pulsed laser-based optical sensor monitoring systems for real time microplastic particle counting are proposed and developed in this study. To develop our real time monitoring system, we used a 450 nm pulsed laser and a photomultiplier with very high quantum efficiency. First, we demonstrated that the microplastic particle counting system could detect standard micro bead samples of 100, 250, and $500{\mu}m$ in river water. We then performed research concerning pulsed laser-based optical spectral sensor systems for real time microplastic monitoring. Additionally, we demonstrated that the real time microplastic remote monitoring system using LoRa communications could detect microplastic in the tap water resource protection area.