• Title/Summary/Keyword: Real-time solution

Search Result 1,141, Processing Time 0.03 seconds

Real-time hybrid testing using model-based delay compensation

  • Carrion, Juan E.;Spencer, B.F. Jr.
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.809-828
    • /
    • 2008
  • Real-time hybrid testing is an attractive method to evaluate the response of structures under earthquake loads. The method is a variation of the pseudodynamic testing technique in which the experiment is executed in real time, thus allowing investigation of structural systems with time-dependent components. Real-time hybrid testing is challenging because it requires performance of all calculations, application of displacements, and acquisition of measured forces, within a very small increment of time. Furthermore, unless appropriate compensation for time delays and actuator time lag is implemented, stability problems are likely to occur during the experiment. This paper presents an approach for real-time hybrid testing in which time delay/lag compensation is implemented using model-based response prediction. The efficacy of the proposed strategy is verified by conducting substructure real-time hybrid testing of a steel frame under earthquake loads. For the initial set of experiments, a specimen with linear-elastic behavior is used. Experimental results agree well with the analytical solution and show that the proposed approach and testing system are capable of achieving a time-scale expansion factor of one (i.e., real time). Additionally, the proposed method allows accurate testing of structures with larger frequencies than when using conventional time delay compensation methods, thus extending the capabilities of the real-time hybrid testing technique. The method is then used to test a structure with a rate-dependent energy dissipation device, a magnetorheological damper. Results show good agreement with the predicted responses, demonstrating the effectiveness of the method to test rate-dependent components.

A Comparison Study of Real-Time Solution to All- Attitude Angles of an Aircraft

  • Shin Sung-Sik;Lee Jung-Hoon;Yoon Sug-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.376-381
    • /
    • 2006
  • In this paper, the quaternion, the dual Euler, and the direction cosine methods are numerically compared using a non-aerodynamic 6 degree-of-freedom rigid model at all-attitude angles of an aircraft. The dual Euler method turns out to be superior to the others in the applications because it shows better numerical accuracy, stability, and robustness in integration step sizes. The dual Euler method is affordably less efficient than the quaternion method in terms of computational cost. Numerical accuracy and stability, which allow larger integration step sizes, are more critical in modern real-time applications than computational efficiency because of today's increased computational power. If the quaternion method is required because of constraints in computation time, then a suppression mechanism should be provided for algebraic constraint errors which will eventually add computational burden.

Scratchpad Memory Architectures and Allocation Algorithms for Hard Real-Time Multicore Processors

  • Liu, Yu;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.2
    • /
    • pp.51-72
    • /
    • 2015
  • Time predictability is crucial in hard real-time and safety-critical systems. Cache memories, while useful for improving the average-case memory performance, are not time predictable, especially when they are shared in multicore processors. To achieve time predictability while minimizing the impact on performance, this paper explores several time-predictable scratch-pad memory (SPM) based architectures for multicore processors. To support these architectures, we propose the dynamic memory objects allocation based partition, the static allocation based partition, and the static allocation based priority L2 SPM strategy to retain the characteristic of time predictability while attempting to maximize the performance and energy efficiency. The SPM based multicore architectural design and the related allocation methods thus form a comprehensive solution to hard real-time multicore based computing. Our experimental results indicate the strengths and weaknesses of each proposed architecture and the allocation method, which offers interesting on-chip memory design options to enable multicore platforms for hard real-time systems.

MODELS AND SOLUTION METHODS FOR SHORTEST PATHS IN A NETWORK WITH TIME-DEPENDENT FLOW SPEEDS

  • Sung, Ki-Seok;Bell, Michael G-H
    • Management Science and Financial Engineering
    • /
    • v.4 no.2
    • /
    • pp.1-13
    • /
    • 1998
  • The Shortest Path Problem in Time-dependent Networks, where the travel time of each link depends on the time interval, is not realistic since the model and its solution violate the Non-passing Property (NPP:often referred to as FIFO) of real phenomena. Furthermore, solving the problem needs much more computational and memory complexity than the general shortest path problem. A new model for Time-dependent Networks where the flow speeds of each link depend on time interval, is suggested. The model is more realistic since its solution maintains the NPP. Solving the problem needs just a little more computational complexity, and the same memory complexity, as the general shortest path problem. A solution algorithm modified from Dijkstra's label setting algorithm is presented. We extend this model to the problem of Minimum Expected Time Path in Time-dependent Stochastic Networks where flow speeds of each link change statistically on each time interval. A solution method using the Kth-shortest Path algorithm is presented.

  • PDF

Real-Time Forward Kinematics of the 6-6 Stewart Platform with One Extra Linear Sensor (한 개의 선형 여유센서를 갖는 스튜어트 플랫폼의 실시간 순기구학)

  • Sim, Jae-Gyeong;Lee, Tae-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1384-1390
    • /
    • 2001
  • This paper deals with the forward kinematics of the 6-6 Stewart platform of planar base and moving platform using one extra linear sensor. Based on algebraic elimination method, it first derives an 8th-degree univariate equation and then finds tentative solution sets out of which the actual solution is to be selected. In order to provide more exact solution despite the error between measured sensor value and the theoretic alone, a correction method is also used in this paper. The overall procedure requires so little computation time that it can be efficiently used for real-time applications. In addition, unlike the iterative scheme e.g. Newton-Raphson, the algorithm does not require initial estimates of solution and is free of the problems that it does not converge to actual solution within limited time. The presented method has been implemented in C language and a numerical example is given to confirm the effectiveness and accuracy of the developed algorithm.

The Profibus Timed Token MAC Protocol for Real-Time Communications

  • Lee, Hong-Hee;Kim, Gwan-Su;Jung, Eui-Heon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.691-694
    • /
    • 2003
  • This paper describes how to use Profibus networks to support real-time industrial communications, that is, how to ensure the transmission of real-time messages within a maximum bound time. Profibus is based on a simplified timed token protocol, which is a well-proved solution for the real-time communication systems. However, Profibus differs from the timed token protocol, thus the usual timed token protocol has to be modified in order to be applied in Profibus. In fact, the real-time solutions for networks based on the timed token protocol rely on the possibility of allocating specific bandwidth for the real-time traffic. This means that a minimum amount of time to transmit the real-time messages is always guaranteed whenever each token is arrived. In other words, with the Profibus protocol, at least, one real-time message should be transmitted per every token visit in the worst case. It is required to control medium access properly to satisfy the message deadlines. In this paper, we have presented how to obtain the optimal network parameter for the Profibus protocol. The selected network parameter is valid regardless of the behavior of asynchronous messages.

  • PDF

The robust control for a linear time-varying system using state transformation (상태 변환을 이용한 선형 시변 시스템에 대한 강건한 제어)

  • Cho, Do-Hyeoun;Lee, Sang-Hyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • This paper is focussed on the problem of robustly stabilizing a transformable linear time-varying system. The considered system is a class of state feedback transformable linear systems. First, the real linear time-varying system is transformed into the linear time invariant system composed with the time-invariant linear part and the time-varying uncertainty part. Second, the solution to a quadratic stabilization problem in the transformed linear system is give via' Lyapunov methods. Then this solution is used to construct a stabilizing linear control law for the real linear time-varying system.

  • PDF

Development of an Extended EDS(Earliest Deadline Scheduling) Algorithm for the CAN-Based Real-Time System (CAN기반 실시간 시스템을 위한 확장된 EDS 알고리즘 개발)

  • Lee, Byong-Hoon;Kim, Hong-Ryeol;Kim , Dae-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.7
    • /
    • pp.294-301
    • /
    • 2002
  • A new dynamic scheduling algorithm is proposed for CAN-based real-time system in this paper. The proposed algorithm is extended from an existing EDS(Earliest Deadline Scheduling) approach having a solution to the priority inversion. Using the proposed algorithm, the available bandwidth of network media can be checked dynamically, and consequently arbitration delay causing the miss of deadline can be avoided. Also, non-real time messages can be processed with their bandwidth allocation. Full network utilization and real-time transmission feasibility can be achieved through the algorithm. To evaluate the performance of algorithm, two simulation tests are performed. The first one is transmission data measurement per minute for periodic messages and the second one is feasibility in the system with both periodic messages and non-real time message.

Analytic consideration on real-time assembly line control for multi-PCB models

  • Um, Doo-Gan;Park, Jong-Oh;Cho, Sung-Jong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.318-323
    • /
    • 1992
  • The improvement of the production capability of multi PCB assembly line can not be simply done by improving the capacities of each assembly robot cells but must be done by controlling the production line effectively with the line host computer which controls over the whole assembly line. A real time production control, a real time model change and a real time trouble shooting compose the specific concepts of this technique. In this paper, we present and analyze the definition and application method of real time assembly concept. The meaning of real time model change, troubles and error sooting and its algorithm will be introduced. Also, the function of the host computer which is in charge of all of many different tasks mentioned above and the method are presented. The improvement of the productivity is mainly focused on the efficiency of multi-PCB production control. The importance of this aspect is gradually increasing, which we have presented the analysis and the solution.

  • PDF

The Real-time Self-tuning Learning Control based on Evolutionary Computation (진화 연산을 이용한 실시간 자기동조 학습제어)

  • Chang, Sung-Quk;Lee, Jin-Kul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.105-109
    • /
    • 2001
  • This paper discuss the real-time self-tuning learning control based on evolutionary computation, which proves its the superiority in the finding of the optimal solution at the off-line learning method. The individuals are reduced in order to learn the evolutionary strategy in real-time, and new method that guarantee the convergence of evolutionary mutations are proposed. It possible to control the control object varied as time changes. As the state value of the control object is generated, applied evolutionary strategy each sampling time because the learning process of an estimation, selection, mutation in real-time. These algorithms can be applied, the people who do not have knowledge about the technical tuning of dynamic systems could design the controller or problems in which the characteristics of the system dynamics are slightly varied as time changes.

  • PDF