• Title/Summary/Keyword: Real-time scanning

Search Result 238, Processing Time 0.033 seconds

Point Cloud-Based Spatial Environment Development for Near Real-Time Erection Simulation in Shipyards

  • Yeon-Jun Kim;SeungYeol Wang;Jaewon Jang;Bon-Yeong Park;Dong-Kun Lee;Daekyun Oh
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.247-255
    • /
    • 2023
  • Interference and collisions often occur in the loading process at shipyards. Existing simulation methods focus primarily on resource processes and schedules, and there is a lack of real-time reflection in the complex and highly variable loading process. This study aims to develop a spatial environment incorporating real-time product data, such as hulls, and confirms its effectiveness by simulating various construction scenarios. As a method, a near real-time spatial environment based on broadband laser scanning was established, with the situation of loading heavy cargo assumed when converting an existing ship into an LNG dual-fuel propulsion ship. A case study simulation of near-real-time cargo loading processes was then conducted using Unity 3D to confirm the interference and collision risks within the spatial environment. The results indicated that interference occurred in structures previously not identified in the design data, and a collision occurred during the loading object erection phase. The simulation confirmed that the identification of interference and collision risks during the erection phase highlights the need for a relocation or removal process of potential hazards before erection takes place. An improved erection simulation that integrates near real-time data could effectively prevent interference and collision risks.

A Study on the Eye-Hand Coordination for Korean Text Entry Interface Development (한글 문자 입력 인터페이스 개발을 위한 눈-손 Coordination에 대한 연구)

  • Kim, Jung-Hwan;Hong, Seung-Kweon;Myung, Ro-Hae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.149-155
    • /
    • 2007
  • Recently, various devices requiring text input such as mobile phone IPTV, PDA and UMPC are emerging. The frequency of text entry for them is also increasing. This study was focused on the evaluation of Korean text entry interface. Various models to evaluate text entry interfaces have been proposed. Most of models were based on human cognitive process for text input. The cognitive process was divided into two components; visual scanning process and finger movement process. The time spent for visual scanning process was modeled as Hick-Hyman law, while the time for finger movement was determined as Fitts' law. There are three questions on the model-based evaluation of text entry interface. Firstly, are human cognitive processes (visual scanning and finger movement) during the entry of text sequentially occurring as the models. Secondly, is it possible to predict real text input time by previous models. Thirdly, does the human cognitive process for text input vary according to users' text entry speed. There was time gap between the real measured text input time and predicted time. The time gap was larger in the case of participants with high speed to enter text. The reason was found out investigating Eye-Hand Coordination during text input process. Differently from an assumption that visual scan on the keyboard is followed by a finger movement, the experienced group performed both visual scanning and finger movement simultaneously. Arrival Lead Time was investigated to measure the extent of time overlapping between two processes. 'Arrival Lead Time' is the interval between the eye fixation on the target button and the button click. In addition to the arrival lead time, it was revealed that the experienced group uses the less number of fixations during text entry than the novice group. This result will contribute to the improvement of evaluation model for text entry interface.

Fast Holographic Image Reconstruction Using Phase-Shifting Assisted Depth Detection Scheme for Optical Scanning Holography

  • Lee, Munseob;Min, Gihyeon;Kim, Nac-Woo;Lee, Byung Tak;Song, Je-Ho
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.599-605
    • /
    • 2016
  • For the implementation of a real-time holographic camera, fast and automatic holographic image reconstruction is an essential technology. In this paper, we propose a new automatic depth-detection algorithm for fast holography reconstruction, which is particularly useful for optical scanning holography. The proposed algorithm is based on the inherent phase difference information in the heterodyne signals, and operates without any additional optical or electrical components. An optical scanning holography setup was created using a heterodyne frequency of 4 MHz with a 500-mm distance and 5-mm depth resolution. The reconstruction processing time was measured to be 0.76 s, showing a 62% time reduction compared to a recent study.

Design and Implementation of Depth Image Based Real-Time Human Detection

  • Lee, SangJun;Nguyen, Duc Dung;Jeon, Jae Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.212-226
    • /
    • 2014
  • This paper presents the design and implementation of a pipelined architecture and a method for real-time human detection using depth image from a Time-of-Flight (ToF) camera. In the proposed method, we use Euclidean Distance Transform (EDT) in order to extract human body location, and we then use the 1D, 2D scanning window in order to extract human joint location. The EDT-based human extraction method is robust against noise. In addition, the 1D, 2D scanning window helps extracting human joint locations easily from a distance image. The proposed method is designed using Verilog HDL (Hardware Description Language) as the dedicated hardware architecture based on pipeline architecture. We implement the dedicated hardware architecture on a Xilinx Virtex6 LX750 Field Programmable Gate Arrays (FPGA). The FPGA implementation can run 80 MHz of maximum operating frequency and show over 60fps of processing performance in the QVGA ($320{\times}240$) resolution depth image.

Considerations for Developing a SLAM System for Real-time Remote Scanning of Building Facilities (건축물 실시간 원격 스캔을 위한 SLAM 시스템 개발 시 고려사항)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In managing building facilities, spatial information is the basic data for decision making. However, the method of acquiring spatial information is not easy. In many cases, the site and drawings are often different due to changes in facilities and time after construction. In this case, the site data should be scanned to obtain spatial information. The scan data actually contains spatial information, which is a great help in making space related decisions. However, to obtain scan data, an expensive LiDAR (Light Detection and Ranging) device must be purchased, and special software for processing data obtained from the device must be available.Recently, SLAM (Simultaneous localization and mapping), an advanced map generation technology, has been spreading in the field of robotics. Using SLAM, 3D spatial information can be obtained quickly in real time without a separate matching process. This study develops and tests whether SLAM technology can be used to obtain spatial information for facility management. This draws considerations for developing a SLAM device for real-time remote scanning for facility management. However, this study focuses on the system development method that acquires spatial information necessary for facility management through SLAM technology. To this end, we develop a prototype, analyze the pros and cons, and then suggest considerations for developing a SLAM system.

Three-Dimensional Television using Optical Scanning Holography

  • Poon, Ting-Chung
    • Journal of Information Display
    • /
    • v.3 no.3
    • /
    • pp.12-16
    • /
    • 2002
  • We first review a real-time three-dimensional (3-D) holographic recording technique called optical scanning holography (OSH) and discuss holographic reconstruction using spatial light modulators (SLMs). We then present how the overall system can be used for 3-D holographic television (TV) display with a wide-angle view of a 3-D image, and address some of the issues encountered. Finally, we suggest some techniques to alleviate the issues encountered in such a 3-D holographic TV system.

자율주행 로봇을 위한 Laser Range Finder

  • 차영엽;권대갑
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.266-270
    • /
    • 1992
  • In this study an active vision system using a laser range finder is proposed for the navigation of a mobile robot in unknown environment. The laser range finder consists of a slitted laser beam generator, a scanning mechanism, CCD camera, and a signal processing unit. A laser beam from laser source is slitted by a set of cylindrical lenses and the slitted laser beam is emitted up and down and rotates around the robot by the scanning mechanism. The image of laser beam reflected on the surface of an object is engraved on the CCD array. A high speed image processing algorithm is proposed for the real-time navigation of the mobile robot. Through experiments it is proved that the accurate and real-time recognition of environment is able to be realized using the proposed laser range finder.

Enhancement of Common-path Fourier-domain Optical Coherence Tomography using Active Surface Tracking Algorithm (표면 추적 알고리즘을 적용한 공통경로 FD-OCT의 성능개선)

  • Kim, Min-Ho;Kim, Keo-Sik;Song, Chul-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.639-642
    • /
    • 2012
  • Optical coherence tomography(OCT) can provide real-time and non-invasive subsurface imaging with ultra-high resolution of micrometer scale. However, conventional OCT systems generally have a limited imaging depth range within a depth of only 1-2 mm. To overcome the limitation, we have proposed an active surface tracking algorithm used in common-path Fourier-domain OCT system in order to extend the imaging depth range. The surface tracking algorithm based on the threshold and Savitzky-Golay filter of A-scan data was applied to real-time tracking. The algorithm has controlled a moving stage according to the sample's surface variance in real time. An OCT image obtained by the algorithm clearly show an extended imaging depth range. Consequently, the proposed algorithm demonstrated the potential for improving the conventional OCT systems with limitary depth range.

An Implementation of FPGA Embedded System for Real-Time SONAR Signal Display Using the Triple Buffering Method (삼중 버퍼링 방법을 이용한 실시간 소나 신호 디스플레이를 위한 FPGA 임베디드 시스템의 구현)

  • Kim, Dong-Jin;Park, Young-Seak
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.3
    • /
    • pp.173-182
    • /
    • 2014
  • The CRT monitor display system for SONAR signal that are commonly used in ships or naval vessels uses vector scanning method. Therefore the processing circuits of the system are complex. Also the purchase of parts is difficult as well as high-cost because the production had been shut down. FPGA-based embedded system is flexible to various digital applications because it can be able to simplify processing circuits and to make a easy customized design for end user, and it provides low-cost high-speed performance. In this paper, we describe an implementation of FPGA embedded system for real-time SONAR signal display using the triple buffering method to overcome some weakness of existing CRT system. Our system provides real-time acquisition and display capability of SONAR signal, and removes afterimage effect that is a critical problem of the system proposed in the preceding study.

Rapid detection and Quantification of Fish Killing Dinoflagellate Cochlodinium polykrikoides (Dinophyceae) in Environmental Samples Using Real-time PCR

  • Park, Tae-Gyu;Kang, Yang-Soon;Seo, Mi-Kyung;Kim, Chang-Hoon;Park, Young-Tae
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.205-208
    • /
    • 2008
  • The mixotrophic dinoflagellate Cochlodinium polykrikoides was reported to be linked to major fish kills in Korea and Japan since the 1990s. Rapid and sensitive detection of microalgae has been problematic because morphological identification of dinoflagellates requires light microscopic and scanning electron microscopic observations that are time consuming and laborious compared to real-time PCR. To address this issue, a real-time PCR probe targeting the ITS2 rRNA gene was used for rapid detection and quantification of C. polykrikoides. PCR inhibitors in water column samples were removed by dilution of template DNA for elimination of false-negative reactions. A strong association between cell quantification using real-time PCR and microscopic counts suggests that the real-time PCR assay is an alternative method for cell estimation of C. polykrikoides in environment samples.