• Title/Summary/Keyword: Real-time performance

Search Result 6,098, Processing Time 0.035 seconds

PID Control of Unstable Processes with Time Delay (시간지연을 갖는 불안정한 시스템의 PID 제어)

  • Lee, Soo-Lyong;Lee, Yun-Hyung;Ahn, Jong-Kap;Son, Jung-Ki;Ryu, Ki-Tak;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.721-728
    • /
    • 2009
  • PID control is widely used to control stable processes, however, PID control for unstable processes is less common. In this paper, systematic tuning methods are derived to tune the PID controller for unstable FOPTD(Forst Order Plus Time Delay) processes. The proposed PID controllers for set-point tracking and disturbance rejection problem are tuned based on minimizing the performance indexes (IAE, ISE, ITAE) using a real-coded genetic algorithm. Simulation example is given to illustrate the set-point tracking and disturbance rejection performance of the proposed method.

HSR Traffic Reduction Algorithms for Real-time Mission-critical Military Applications

  • Nguyen, Xuan Tien;Rhee, Jong Myung
    • Information and Communications Magazine
    • /
    • v.32 no.10
    • /
    • pp.31-40
    • /
    • 2015
  • This paper investigates several existing techniques to reduce high-availability seamless redundancy (HSR) traffic. HSR is a redundancy protocol for Ethernet networks that provides duplicated frames for separate physical paths with zero recovery time. This feature makes it very useful for real-time and mission-critical applications, such as military applications and substation automation systems. However, the major drawback of HSR is that it generates too much unnecessary redundant traffic in HSR networks. This drawback degrades network performance and may cause congestion and delay. Several HSR traffic reduction techniques have been proposed to reduce the redundant traffic in HSR networks, resulting in the improvement of network performance. In this paper, we provide an overview of these HSR traffic reduction techniques in the literature. The operational principles, advantages, and disadvantages of these techniques are investigated and summarized. We also provide a traffic performance comparison of these HSR traffic reduction techniques.

Implementation and Performance Analysis of DGPS & RTK Error Correction Data Real-Time Transmission System for Long-Distance in Mobile Environments

  • Cho, Ik-Sung;Ha, Chang-Seung;Yim, Jae-Hong
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.291-291
    • /
    • 2002
  • DGPS(Differential Global Positioning System) and RTK(RealTime Kinematic) is in one of today's most widely used surveying techniques. But It's use is restricted by the distance between reference station and rover station and it is difficult to process data in realtime by it's own orgnizational limitation in precise measurement of positioning. To meet these new demands, In This paper, new DGPS and RTK correction data services through Internet and PSTN(Public Switched Telephony Network) have been proposed. For this purpose, we implemented performance a DGPS and RTK error correction data transmission system for long-distance using the internet and PSTN network which allows a mobile user to increase the distance at which the rover receiver is located from the reference in realtime. and we analyzed and compared DGPS and RTK performance by experiments through the Internet and PSTN network with the distance and the time.

  • PDF

Design and Implementation of Smart Gardening System Using Real-Time Visualization Algorithm Based on IoT (IoT 기반 실시간 시각화 알고리즘을 이용한 스마트가드닝 시스템 설계 및 구현)

  • Son, Soo-A;Park, Seok-Cheon
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.31-37
    • /
    • 2015
  • Data generated from sensors are exploding with recent development of IoT. This paradigm shift requires various industry fields that demand instant actions to analyze the arising data on a real-time basis, along with the real-time visualization analysis. As the existing visualization systems, however, perform visualization after storing data, the response time of the server cannot guarantee the ms-level processing that is close to real-time. They also have a problem of destroying data that can be major resources as they do not possess the process resources. Therefore, a smart gardening system that applies a real-time visualization algorithm using IoT sensing data under a gardening environment was designed and implement in this study. The response time of the server was measured to evaluate the performance of the suggested system. As a result, the response speed of the suggested real-time visualization algorithm was guaranteeing the ms-level processing close to real-time.

Systematic Transmission Method of Industrial IEEE 802.15.4 for Real-time Mixed Traffic (실시간 혼합 트래픽 전송을 위한 산업용 IEEE 802.15.4 망의 체계적 전송 기법)

  • Kim, Dong-Sung;Lee, Jung-Il
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.18-26
    • /
    • 2008
  • In this paper, dynamic GTS scheduling method based on IEEE 802.15.4 is proposed for wireless control system considering reliability and real-time property. The proposed methods can guarantee a transmission of real-time periodic and sporadic data within the limited time frame in factory environment. The superframe of IEEE 802.15.4 is used for the dynamic transmission method of real-time mixed traffic (periodic data, sporadic data, and non real-time message). By separating CFP and CAP properly, the periodic, sporadic, and non real-time messages are transmitted effectively and guarantee real-time transmission within a deadline. The simulation results show the improvement of real-time performance of periodic and sporadic data at the same time.

Real time Adaptive control of the Manipulator (매니퓰레이터의 실시간 적응제어)

  • Chung, C.S.;Lee, S.C.;Na, C.D.;Koo, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.771-776
    • /
    • 1991
  • In this paper. an indirect adaptive controller for manipulator which is composed of two controller structure is considered. One is feedforward controller in which the dynamics equation solved and the other is feedback controller in which the output error compensated. This controller has a good performance, but the computation burden of the feed forward controller keep from real time control. At this point, we proposed the two time adaptive controller where the sampling time of the feedforward controller is quite longer than that of the feedback controller. By the computer simulation, this proposed two time adaptive controller shows good performance in the view of accuracy in spite of decreasing computational burden.

  • PDF

Real-Time GPU Task Monitoring and Node List Management Techniques for Container Deployment in a Cluster-Based Container Environment (클러스터 기반 컨테이너 환경에서 실시간 GPU 작업 모니터링 및 컨테이너 배치를 위한 노드 리스트 관리기법)

  • Jihun, Kang;Joon-Min, Gil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.11
    • /
    • pp.381-394
    • /
    • 2022
  • Recently, due to the personalization and customization of data, Internet-based services have increased requirements for real-time processing, such as real-time AI inference and data analysis, which must be handled immediately according to the user's situation or requirement. Real-time tasks have a set deadline from the start of each task to the return of the results, and the guarantee of the deadline is directly linked to the quality of the services. However, traditional container systems are limited in operating real-time tasks because they do not provide the ability to allocate and manage deadlines for tasks executed in containers. In addition, tasks such as AI inference and data analysis basically utilize graphical processing units (GPU), which typically have performance impacts on each other because performance isolation is not provided between containers. And the resource usage of the node alone cannot determine the deadline guarantee rate of each container or whether to deploy a new real-time container. In this paper, we propose a monitoring technique for tracking and managing the execution status of deadlines and real-time GPU tasks in containers to support real-time processing of GPU tasks running on containers, and a node list management technique for container placement on appropriate nodes to ensure deadlines. Furthermore, we demonstrate from experiments that the proposed technique has a very small impact on the system.

Application of Neural Network Adaptive Control for Real-time Attitude Control of Multi-Articulated Robot (다관절 로봇의 실시간 자세제어를 위한 신경회로망 적응제어의 적용)

  • Lee, Seong-Su;Park, Wal-Seo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.50-55
    • /
    • 2011
  • This research is to apply the adaptive control of neuron networks for the real-time attitude control of Multi-articulated robot. Multi-articulated robot is expressed with a complicated mathematical model on account of the mechanic, electric non-linearity which each articulation of mechanism has, and includes an unstable factor in time of attitude control. If such a complex expression is included in control operation, it leads to the disadvantage that operation time is lengthened. Thus, if the rapid change of the load or the disturbance is given, it is difficult to fulfill the control of desired performance. In this research we used the response property curve of the robot instead of the activation function of neural network algorithms, so the adaptive control system of neural networks constructed without the information of modeling can perform a real-time control. The proposed adaptive control algorithm generated control signs corresponding to the non-linearity of Multi-articulated robot, which could generate desired motion in real time.

Modeling and Control of Intersection Network using Real-Time Fuzzy Temporal Logic Framework (실시간 퍼지 시간논리구조를 이용한 교차로 네트워크의 모델링과 제어)

  • Kim, Jung-Chul;Lee, Won-Hyok;Kim, Jin-Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.352-357
    • /
    • 2007
  • This paper deals with modeling method and application of Fuzzy Discrete Event System(FDES). FDES have characteristics which Crisp Discrete Event System(CDES) can't deals with and is constituted with the events that is determined by vague and uncertain judgement like biomedical or traffic control. We proposed Real-time Fuzzy Temporal Logic Framework(RFTLF) to model Fuzzy Discrete Event System. It combines Temporal Logic Framework with Fuzzy Theory. We represented the model of traffic signal systems for intersection to have the property of Fuzzy Discrete Event System with Real-time Fuzzy Temporal Logic Framework and designed a traffic signal controller for smooth traffic flow. Moreover, we proposed the method to find the minimum-time route to reach the desired destination with information obtained in each intersection. In order to evaluate the performance of Real-time Fuzzy Temporal Logic Framework model proposed in this paper, we simulated unit-time extension traffic signal controller model of the latest signal control method on the same condition.

Development of a real-time gamma camera for high radiation fields

  • Minju Lee;Yoonhee Jung;Sang-Han Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.56-63
    • /
    • 2024
  • In high radiation fields, gamma cameras suffer from pulse pile-up, resulting in poor energy resolution, count losses, and image distortion. To overcome this problem, various methods have been introduced to reduce the size of the aperture or pixel, reject the pile-up events, and correct the pile-up events, but these technologies have limitations in terms of mechanical design and real-time processing. The purpose of this study is to develop a real-time gamma camera to evaluate the radioactive contamination in high radiation fields. The gamma camera is composed of a pinhole collimator, NaI(Tl) scintillator, position sensitive photomultiplier (PSPMT), signal processing board, and data acquisition (DAQ). The pulse pile-up is corrected in real-time with a field programmable gate array (FPGA) using the start time correction (STC) method. The STC method corrects the amplitude of the pile-up event by correcting the time at the start point of the pile-up event. The performance of the gamma camera was evaluated using a high dose rate 137Cs source. For pulse pile-up ratios (PPRs) of 0.45 and 0.30, the energy resolution improved by 61.5 and 20.3%, respectively. In addition, the image artifacts in the 137Cs radioisotope image due to pile-up were reduced.