DOI QR코드

DOI QR Code

Development of a real-time gamma camera for high radiation fields

  • Minju Lee (Korea Research Institute of Standards and Science) ;
  • Yoonhee Jung (Korea Research Institute of Standards and Science) ;
  • Sang-Han Lee (Korea Research Institute of Standards and Science)
  • Received : 2023.03.17
  • Accepted : 2023.09.04
  • Published : 2024.01.25

Abstract

In high radiation fields, gamma cameras suffer from pulse pile-up, resulting in poor energy resolution, count losses, and image distortion. To overcome this problem, various methods have been introduced to reduce the size of the aperture or pixel, reject the pile-up events, and correct the pile-up events, but these technologies have limitations in terms of mechanical design and real-time processing. The purpose of this study is to develop a real-time gamma camera to evaluate the radioactive contamination in high radiation fields. The gamma camera is composed of a pinhole collimator, NaI(Tl) scintillator, position sensitive photomultiplier (PSPMT), signal processing board, and data acquisition (DAQ). The pulse pile-up is corrected in real-time with a field programmable gate array (FPGA) using the start time correction (STC) method. The STC method corrects the amplitude of the pile-up event by correcting the time at the start point of the pile-up event. The performance of the gamma camera was evaluated using a high dose rate 137Cs source. For pulse pile-up ratios (PPRs) of 0.45 and 0.30, the energy resolution improved by 61.5 and 20.3%, respectively. In addition, the image artifacts in the 137Cs radioisotope image due to pile-up were reduced.

Keywords

Acknowledgement

This study was supported by the Korea Research Institute of Standards and Science under the project "Establishment of evaluation technique on radioactivity measurement standards in the nuclear power plant decommissioning by-products" (grant number 23011079).

References

  1. International Atomic Energy Agency, International Nuclear and Radiological Event Scale, edition, 2008.
  2. Teppei J. Yasunari, Andreas Stohl, Ryugo S. Hayano, Tetsuzo Yasunari, Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident, Proc. Natl. Acad. Sci. U. S. A. 108 (49) (2011) 19530-19534.
  3. Yuichiro Ueno, Isao Takahashi, Takafumi Ishitsu, Takahiro Tadokoro, Koichi Okada, Yasushi Nagumo, Yasutake Fujishima, Yutaka Kometani, Yasuhiko Suzuki, Kikuo Umegaki, Spectroscopic gamma camera for use in high dose environment, Nucl. Instrum. Methods Phys. Res. 822 (2016) 48-56.
  4. Gyuseong Cho, Gamma-ray detectors for nuclear medical imaging instruments, Nucl. Med. Mol. Imag. 42 (2) (2008) 88-97.
  5. Simon R. Cherry, James A. Sorenson, Michael E. Phelps, Physics in Nuclear Medicine, forth ed., Elsevier, 2012.
  6. Jerry L. Prince, Jonathan M. Links, Medical Imaging Signals and Systems, second ed., 2016.
  7. E. Caroli, J.B. Stephen, G. Di Cocco, L. Natalucci, A. Spizzichino, Coded aperture imaging in X- and gamma-ray astronomy, Space Sci. Rev. 45 (3) (1987) 349-403.
  8. Youngjun Shin, Geehyun Kim, Gyemin Lee, Estimating the direction and distance of an unknown radiation source using RMC, J. Inst. Electron. Inf. Eng. 53 (9) (2016) 1416-1423.
  9. Michal J. Cieslak, Kelum A.A. Gamage, Robert Glove, Coded-aperture imaging systems: past, present and future development - a review, Radiat. Meas. 92 (2016) 59-71.
  10. Ji-Peng Zhang, Xiu-zuo Liang, Jia-le Cai, Yi Liu, Xian-chao Huang, Dao-wu Li, Xiong Xiao, Xiao-yu Pang, Zhi-ming Zhang, Long Wei, Shuai Lei, Prototype of an array SiPM-based scintillator Compton camera for radioactive materials detection, Radiat. Detect. Technol. Methods 3 (17) (2019) 1-12.
  11. Leonid L. Nkuba, Innocent J. Junior, Salum M. Mohamed, Innocent J. Lugendo, Najat K. Mohammed, Review of the imaging performance and the current status of the cascade gamma-rays coincidence imagers, Tanzan. J. Eng. Technol. 41 (4) (2022) 229-246.
  12. Glenn F. Knoll, Radiation Detection and Measurement, forth ed., John Wiley & Sons, 2010.
  13. H.-S. Kim, S.-W. Han, J.-H. Yang, S. Kim, Y. Kim, S. Kim, D.-K. Yoon, J.-S. Lee, J.-C. Park, Y. Sung, An asynchronous sampling-based 128 X 128 direct photon-counting X-ray image detector with multi-energy discrimination and high spatial resolution, IEEE J. Solid State Circ. 48 (2) (2013) 541-558.
  14. R. Bellazzini, A. Brez, G. Spandre, M. Minuti, M. Pinchera, P. Delogu, P.L. de Ruvo, A. Vincenzi, Pixie III: a very large area photon-counting CMOS pixel ASIC for sharp X-ray spectral imaging, J. Instrum. 10 (2015) 1-8.
  15. Daehee Lee, Kyung Taek Lim, Kyungjin Park, Changyeop Lee, Gyuseong Cho, A new cross-detection method for improved energy-resolving photon counting under pulse pile-up, Nucl. Instrum. Methods Phys. Res. A 867 (2017) 154-162.
  16. Kun Hu, Feng Li, Lian Chen, Fu-Tian Liang, Ge Jin, An FPGA-based pulse pile-up rejection technique for photon counting imaging detectors, Chin. Phys. Lett. 32 (3) (2015) 1-4.
  17. Xiaodong Zhong, Lian Chen, Baochen Wang, Ge Jin, A spectrometer with baseline correction and fast pulse pile-up rejection for prompt gamma neutron activation analysis Technology, Rev. Sci. Instrum. 89 (2018) 1-8.
  18. Hong Xu, Jianbin Zhou, Shijun Ni, Yingjie Ma, Jianfeng Yao, Wei Zhou, Yi Liu, Min Wang, Counting-loss correction for X-ray spectroscopy using unit impulse pulse shaping, J. Synchrotron Radiat. 25 (2) (2018) 505-513.
  19. Yi Liu, Ming Wang, Wenjie Wan, Jianbin Zhou, Hong Xu, Fei Liu, Jie Yu, Counting-loss correction method based on dual-exponential impulse shaping, J. Synchrotron Radiat. 27 (2020) 1607-1613.
  20. P.A.B. Scoullar, C.C. McLean, R.J. Evans, Real time pulse pile-up recovery in a high throughput digital pulse processor, AIP Conf. Proc. 1421 (2011) 270-277.
  21. X. Wen, H. Yang, Study on a digital pulse processing algorithm based on template-matching for high-throughput spectroscopy, Nucl. Instrum. Methods Phys. Res. A 784 (2015) 269-273.
  22. W.H. Wong, H. Li, J. Uribe, H. Baghaei, Y. Wang, S. Yokoyama, Feasibility of a high-speed gamma-camera design using the high-yield-pileup-event-recovery method, J. Nucl. Med. 42 (2001) 624-632.
  23. J. Liu, H. Li, Y. Wang, S. Kim, Y. Zhang, S. Liu, H. Baghaei, R. Ramirez, W.-H. Wong, Real Time Digital Implementation of the High-Yield-Pileup-Event-Recover (HYPER) Method, IEEE Nuclear Science Symposium Conference Record, 2007, pp. 4230-4232.
  24. X. Wang, Q. Xie, Y. Chen, M. Niu, P. Xiao, Advantages of digitally sampling scintillation pulses in pileup processing in PET, in: IEEE Nuclear Science Symposium Conference Record, 2012, pp. 498-506.
  25. M.-R. Mohammadian-Behbahani, S. Saramad, Pile-up correction algorithm based on successive integration for high count rate medical imaging and radiation spectroscopy, Nucl. Instrum. Methods Phys. Res. A 897 (2018) 1-7.
  26. Minju Lee, Daehee Lee, Eunbie Ko, Kyeongjin Park, Junhyuk Kim, Kilyoung Ko, Manish Sharma, Gyuseong Cho, Pulse pileup correction method for gamma-ray spectroscopy in high radiation fields, Nucl. Eng. Technol. 52 (2020) 1029-1035.