• Title/Summary/Keyword: Real-time implementation

Search Result 3,220, Processing Time 0.032 seconds

Development, implementation and verification of a user configurable platform for real-time hybrid simulation

  • Ashasi-Sorkhabi, Ali;Mercan, Oya
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1151-1172
    • /
    • 2014
  • This paper presents a user programmable computational/control platform developed to conduct real-time hybrid simulation (RTHS). The architecture of this platform is based on the integration of a real-time controller and a field programmable gate array (FPGA).This not only enables the user to apply user-defined control laws to control the experimental substructures, but also provides ample computational resources to run the integration algorithm and analytical substructure state determination in real-time. In this platform the need for SCRAMNet as the communication device between real-time and servo-control workstations has been eliminated which was a critical component in several former RTHS platforms. The accuracy of the servo-hydraulic actuator displacement control, where the control tasks get executed on the FPGA was verified using single-degree-of-freedom (SDOF) and 2 degrees-of-freedom (2DOF) experimental substructures. Finally, the functionality of the proposed system as a robust and reliable RTHS platform for performance evaluation of structural systems was validated by conducting real-time hybrid simulation of a three story nonlinear structure with SDOF and 2DOF experimental substructures. Also, tracking indicators were employed to assess the accuracy of the results.

Proposal an Alternative Data Pipeline to Secure the Timeliness for Official Statistical Indicators (공식발표 통계지표의 적시성 확보를 위한 대안 데이터 파이프라인 구축제안)

  • Yongbok Cho;Dowan Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.89-108
    • /
    • 2023
  • This study provides a comprehensive analysis of recent studies conducted on the topic of nowcasting in order to enhance the accuracy and promptness of official statistical data. Furthermore, we propose an alternative approach involving the utilization of real-time data and its corresponding collection methods to effectively operate a real-time nowcasting model capable of accurately capturing the current economic condition. We explore high-frequency real-time data that can predict economic indicators in both the public and private sectors and propose a pipeline for data collection processing and modeling that is based on cloud platforms. Furthermore we validate the essential elements required for the implementation of real-time nowcasting, as well as their data management protocols to ensure the reliability and consistency needed for accurate forecasting of official statistical indicators.

Implementation of a Labview Based Time-Frequency Domain Reflectometry Real Time System for the Load Impedance Measurement (부하 임피던스 측정을 위한 랩뷰기반 시간-주파수 영역 반사파 실시간 시스템 구현)

  • Park, Tae-Geun;Kwak, Ki-Seok;Park, Jin-Bae;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1803-1804
    • /
    • 2006
  • The purpose of this paper is to implement a Labview based TFDR Real Time system through the instruments of Pci eXtensions for Instrumentation(PXI). The proposed load impedance measurement algorithm was verified by experiments via the implemented real time system. The TFDR real time system consisted of the reference signal design, signal generation, signal acquisition, algorithm execution and results display parts. To implement real time system, all of the parts wore programmed by the Labview which is one of graphical programming languages. In the application software implemented by the Labview we were able to design a suitable reference signal according to the length and frequency attenuation characteristics of the target cable and controled the arbitrary waveform generator(ZT500PXI) of the signal generation part and the digital storage oscilloscope(ZT430PXI) of the signal acquisition part. By using the TFDR real time system with the terminal resistor on the target cable, we applied to the load impedance measurements. In the proposed load impedance algorithm a normalized time-frequency cross correlation function and a cross time-frequency distribution function was employed to calculate the reflection coefficient and phase difference between the input and the reflected signals.

  • PDF

Practical and Verifiable C++ Dynamic Cast for Hard Real-Time Systems

  • Dechev, Damian;Mahapatra, Rabi;Stroustrup, Bjarne
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.4
    • /
    • pp.375-393
    • /
    • 2008
  • The dynamic cast operation allows flexibility in the design and use of data management facilities in object-oriented programs. Dynamic cast has an important role in the implementation of the Data Management Services (DMS) of the Mission Data System Project (MDS), the Jet Propulsion Laboratory's experimental work for providing a state-based and goal-oriented unified architecture for testing and development of mission software. DMS is responsible for the storage and transport of control and scientific data in a remote autonomous spacecraft. Like similar operators in other languages, the C++ dynamic cast operator does not provide the timing guarantees needed for hard real-time embedded systems. In a recent study, Gibbs and Stroustrup (G&S) devised a dynamic cast implementation strategy that guarantees fast constant-time performance. This paper presents the definition and application of a cosimulation framework to formally verify and evaluate the G&S fast dynamic casting scheme and its applicability in the Mission Data System DMS application. We describe the systematic process of model-based simulation and analysis that has led to performance improvement of the G&S algorithm's heuristics by about a factor of 2. In this work we introduce and apply a library for extracting semantic information from C++ source code that helps us deliver a practical and verifiable implementation of the fast dynamic casting algorithm.

Representing Navigation Information on Real-time Video in Visual Car Navigation System

  • Joo, In-Hak;Lee, Seung-Yong;Cho, Seong-Ik
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.365-373
    • /
    • 2007
  • Car navigation system is a key application in geographic information system and telematics. A recent trend of car navigation system is using real video captured by camera equipped on the vehicle, because video has more representation power about real world than conventional map. In this paper, we suggest a visual car navigation system that visually represents route guidance. It can improve drivers' understanding about real world by capturing real-time video and displaying navigation information overlaid directly on the video. The system integrates real-time data acquisition, conventional route finding and guidance, computer vision, and augmented reality display. We also designed visual navigation controller, which controls other modules and dynamically determines visual representation methods of navigation information according to current location and driving circumstances. We briefly show implementation of the system.

Implementation and Performance analysis of a Framework to Support Real-Time of Robot Components (로봇 컴포넌트에 실시간성을 지원하기 위한 프레임워크 구현 및 성능분석)

  • Choi, Chan-Woo;Cho, Moon-Haeng;Park, Seong-Jong;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.81-94
    • /
    • 2009
  • In ubiquitous environments, the real-time features are necessary to insure the QoS of the intelligent service robots. In this paper, we design and implement a real-time framework for intelligent service robots to support real-time features. The real-time framework to support real-time scheduling services is implemented on the general operating systems. We solve the problem that the scheduler of a general operating system can not support real-time features. This paper also proposes realtime scheduling services to guarantee the QoS of real-time robot applications. We implemented the proposed real-time framework on the Windows operating system and conducted some performance experiments. The experimental results show that the proposed real-time framework can improve thread response times and it has slight performance overhead of $62{\mu}s$.

A Study on Implementation of a Real-Time Control Algorithm for Ship Main Engine Remote Control Systems (선박 주기관 원격제어시스템을 위한 실시간 제어알고리즘 구현에 관한 연구)

  • 김종화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.901-907
    • /
    • 1998
  • This paper presents a real-time control technique for the development of a ship main engine remote control system, In general several tasks are executed by the event-driven method in real-time system. However when some tasks have time delay components it is difficult to achieve good real-time performance. To cope with this problem a number of timers in most conventional system have been used. In this paper we introduce a real-time control methodology of dealing effectively with tasks including time delay components using one hardware timer. And also a speed control method of main engine which includes critical revolution range a crash astern and a emergency ahead function a switching method of remote control position and a flickering method for the indication of multi-stage alarm are discussed. As long as functions and method are imple-mented as forms of tasks the development of main engine remote control systems can be easy for different types of engines.

  • PDF

Implementation of Real-time Virtual Touch Recognition System in Embedded System (임베디드 환경에서 실시간 가상 터치 인식 시스템의 구현)

  • Kwon, Soon-Kak;Lee, Dong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.10
    • /
    • pp.1759-1766
    • /
    • 2016
  • We can implement the virtual touch recognition system by mounting the virtual touch algorithm into an embedded device connected to a depth camera. Since the computing performance is limited in embedded system, the real-time processing of recognizing the virtual touch is difficult when the resolution of the depth image is large. In order to resolve the problem, this paper improves the algorithms of binarization and labeling that occupy a lot of time in all processing of virtual touch recognition. It processes the binarization and labeling in only necessary regions rather than all of the picture. By appling the proposed algorithm, the system can recognize the virtual touch in real-time as about 31ms per a frame in the depth image that has 640×480 resolution.

Design and Implementation of an Intelligent System for Real-Time Route Guidance (실시간 경로 조언을 위한 지능형 시스템의 설계 및 구축)

  • Kim, Seong-In;Kim, Hyun-Kee
    • IE interfaces
    • /
    • v.15 no.4
    • /
    • pp.374-381
    • /
    • 2002
  • In this paper, we design and implement a real-time route guidance system(RGS) in large-scale networks. Coupled with the well-known mathematical routing algorithms, we devise an RGS for knowledge aquisition and self-learning ability within the framework of the expert system. Through off-line construction of database, on-line treatment of unexpected traffic accidents, etc., the developed RGS can provide drivers with good quality real-time routing information. The practical effectiveness of the proposed system is demonstrated in terms of response time and route appropriateness.

Design of a Real Time Adaptive Controller for SCARA Robot Using Digitl Signal Process (디지탈 신호처리기를 사용한 스카라 로보트의 실시간 적응제어기 설계)

  • 김용태;서운학;한성현;이만형;김성권
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.472-477
    • /
    • 1996
  • This paper presents a new approachtothe design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The prpposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF