• 제목/요약/키워드: Real-time feedback

Search Result 623, Processing Time 0.03 seconds

Intraoperative Tumor Localization of Early Gastric Cancers

  • Jeong, Sang-Ho;Seo, Kyung Won;Min, Jae-Seok
    • Journal of Gastric Cancer
    • /
    • v.21 no.1
    • /
    • pp.4-15
    • /
    • 2021
  • Recently, endoscopic screening systems have enabled the diagnosis of gastric cancer in the early stages. Early gastric cancer (EGC) is typically characterized by a shallow invasion depth and small size, which can hinder localization of EGC tumors during laparoscopic surgery. Here, we review nine recently reported tumor localization methods for the laparoscopic resection of EGCs. Preoperative dye or blood tattooing has the disadvantage of spreading. Preoperative 3-dimensional computed tomography reconstruction is not performed in real time during laparoscopic gastrectomy. Thus, they are considered to have a low accuracy. Intraoperative portable abdominal radiography and intraoperative laparoscopic ultrasonography methods can provide real-time feedback, but these methods require expertise, and it can be difficult to define the clips in some gastric regions. Despite a few limitations, intraoperative gastrofibroscopy provides real-time feedback with high accuracy. The detection system using an endoscopic magnetic marking clip, fluorescent clip, and radio-frequency identification detection system clip is considered highly accurate and provides real-time feedback; we expect a commercial version of this setup to be available in the near future. However, there is not yet an easy method for accurate real-time detection. We hope that improved devices will soon be developed and used in clinical settings.

Recurrent Neural Network Adaptive Equalizers Based on Data Communication

  • Jiang, Hongrui;Kwak, Kyung-Sup
    • Journal of Communications and Networks
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 2003
  • In this paper, a decision feedback recurrent neural network equalizer and a modified real time recurrent learning algorithm are proposed, and an adaptive adjusting of the learning step is also brought forward. Then, a complex case is considered. A decision feedback complex recurrent neural network equalizer and a modified complex real time recurrent learning algorithm are proposed. Moreover, weights of decision feedback recurrent neural network equalizer under burst-interference conditions are analyzed, and two anti-burst-interference algorithms to prevent equalizer from out of working are presented, which are applied to both real and complex cases. The performance of the recurrent neural network equalizer is analyzed based on numerical results.

Effect of Therapeutic Feedback on Non-Face to Face Exercise for Forward Head Posture: Posture, Muscle Strength, Pressure pain Threshold

  • Kim, Yeri;Kim, Gayoung;Kim, Daye;Shin, Hyeri;Oh, Seonghoon;Yu, Pyeonghwa;Jung, Kyusang;Shin, Wonseob
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.2
    • /
    • pp.147-155
    • /
    • 2021
  • Objective: This study is to investigate the effect of real-time feedback from the therapist on posture, muscle strength, pain of subjects with forward head posture based on a non-face-to-face complex exercise program. Design: Two-group pretest-posttest design. Methods: Thirty healthy men and women in their twenties with forward head posture with a Craniovertebral angle of 52° or less were targeted, the final selection was made as 15 experimental groups who performed the non-face-to-face intervention program while receiving real-time feedback and 15 control subjects who performed the non-face-to-face intervention program without providing feedback. Six of them were eliminated, and a total of 24 were conducted as subjects. All exercise groups performed an exercise program three times a week, 30 minutes each, for a total of two weeks. Before and after exercise, Craniovertebral angle (CVA), CranioRotation angle (CRA), muscle strength, and tenderness threshold were evaluated. Results: Significant differences were shown in both groups in CVA, and tenderness threshold before and after exercise (p<0.05), and CRA, the left middle trapezius muscle strength, only in the experimental group (p<0.05). In the comparison of theamount of change between exercise groups, the group that received feedback on CVA, CRA and tenderness threshold showed a significant change than the group without feedback (p<0.05). Conclusions: As a result of this study, it can be seen that the therapist's real-time feedback is more effective in improving the forward head posture. This requires feedback from the therapist on posture correction during non-face-to-face exercise intervention.

Real Time Control for the Position and Velocity of Robot Manipulator With Parameter Uncertainties (不確實性을 고려한 로보트 매니퓰레이터의 位置 및 速度에 대한 實時間 制御)

  • Lee, Gang-Du;Kim, Gyeong-Nyeon;Han, Seong-Hyeon;Lee, Jin;Lee, Jong-Nyeon;Kim, Hwi-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.30-40
    • /
    • 1995
  • In this paper, it is proposed a robust control scheme for real time control of a robot manipulator with parameter uncertainties. The focus of this paper is a new approach of multivariable control schemes for an assembly robot manipulator to achieve the accurate trajectory tracking by joint angles. The proposed control scheme consists of a multivariable feedforward controller and feedback controller. In this control scheme, the feedback controller consists of proportional-derivative type and is designed by the pole placement method. The feedforward controller uses the inverse of the linealized model of robot manipulator dynamics. This feedback controller ensures that each joint enables to track any reference trajectory. The proposed robot controller scheme has a computational efficiency.

  • PDF

LMI Approach of Reliable $\textit{H}_{\infty}$ Control (신뢰 $\textit{H}_{\infty}$ 제어의 선형 행렬 부등식 방법)

  • Kim, Seong-Woo;Park, Chang-Sun;Yoo, Jang-Hee
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1141-1144
    • /
    • 1999
  • This note addresses the problem of reliable (equation omitted) output-feedback control design for linear systems with actuator and/or sensor failures. An output feedback control design is proposed which stabilizes the plant and guarantees an (equation omitted)-norm bound on at-tenuation of augmented disturbances including all admissible actuator/sensor failures. Based on the linear matrix inequality (LMI) approach, the output- feedback controller design method is constructed by formulating to LMIs that cover all failure cases. Ef-fectiveness of this controller is validated via a numerical example.

  • PDF

Effective Real Time Tracking System using Stereo Vision

  • Lee, Hyun-Jin;Kuc, Tae-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.70.1-70
    • /
    • 2001
  • Recently, research of visual control is getting more essential in robotic application, and acquiring 3D informations from the 2D images is becoming more important with development of vision system. For this application, we propose the effective way of controlling stereo vision tracking system for target tracking and calculating distance between target and camera. In this paper we address improved controller using dual-loop visual servo which is more effective compared with using single-loop visual servo for stereo vision tracking system. The speed and the accuracy for realizing a real time tracking are important. However, the vision processing speed is too slow to track object in real time by using only vision feedback data. So we use another feedback data from controller parts which offer state feedback ...

  • PDF

Real-time Implementationi of the Active Adaptive Noise Controller Considering the Reflected Noise (반사 소음을 고려한 능동 적응 소음 제어기의 실시간 구현)

  • 이종필;장영수;정찬수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.9 no.6
    • /
    • pp.53-61
    • /
    • 1990
  • Real-time implementations of the active adaptive noise controller are proposed and tested. There are three problems in active noise control such as real-time processing, an acoustic feedback of secondary signal and a time-delay of control system elements. For real-time processing, the DSP56001 was used. To avoid acoustic feedback, the secondary signal was excluded from prediction. And for compensation of time delay, the ahead prediction was applied. As the primary noise is reflected in space, the reflected noise should be controlled for perfect noise control. But in this case, the controller might be unstable. For solving the problem, it is proposed that the source noise and the reflected noise are predicted separately. Some experimental results show the stability and effectiveness of the proposed controller.

  • PDF

Effects of a Real-time Plantar Pressure Feedback during Gait Training on the Weight Distribution of the Paralyzed Side and Gait Function in Stroke Patients

  • Kim, Tae-Wu;Cha, Yong-Jun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.2
    • /
    • pp.53-62
    • /
    • 2022
  • PURPOSE: This study was conducted to investigate the effect of a real-time pressure feedback provided during gait training on the weight weight distribution of the inner part of mid-foot in paralyzed side and gait function in stroke patients. METHODS: A total of 24 patients with hemiplegic stroke in a rehabilitation hospital were randomly assigned to the experimental and control group. All participants (n = 24) performed 15 min of comprehensive rehabilitation therapy 5 times a week for a period of 4 weeks. Additionally, the experimental group and control group underwent gait training with a real time feedback and general gait training, respectively, for 15 min five times a week for 4 weeks. Weight distribution and gait function were measured before and after the 4-week training. RESULTS: Significant increases in the weight distribution (WD), stance time (ST) and step length (SL) of the paralyzed side, and a significant decrease in the 10 m walking test (10 MWT) observed after training in the two groups (p < .05). The experimental group showed larger changes in the all variables than the control group (WD, +10.5 kg vs. +8.8 kg, p < .05; ST, 12.8 s vs. 4.9 s, p < .05; SL, 4.9 cm vs. 1.7 cm, p < .05; 10 MWT, -3.5 s vs. -1.0 s, p < .05, respectively). CONCLUSION: Gait training with a real-time feedback might be effective in improving the normalization of weight bearing of the paralyzed lower extremity and gait function of stroke patients, and be considered to be a more effective gait training for improving the abilities than the general gait training.

Real-Time Multiple-Parameter Tuning of PPF Controllers for Smart Structures by Genetic Algorithms (유전자 알고리듬을 이용한 지능구조물의 PPF 제어기 실시간 다중변수 조정)

  • Heo, Seok;Kwak, Moon-Kyu
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.147-155
    • /
    • 2001
  • This paper is concerned with the real-time automatic tuning of the multi-input multi-output positive position feedback controllers for smart structures by the genetic algorithms. The genetic algorithms have proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The previous real-time algorithm that tunes a single control parameter is extended to tune more parameters of the MIMO PPF controller. We employ the MIMO PPF controller since it can enhance the damping value of a target mode without affecting other modes if tuned properly. Hence, the traditional positive position feedback controller can be used in adaptive fashion in real time. The final form of the MIMO PPF controller results in the centralized control, thus it involves many parameters. The bounds of the control Parameters are estimated from the theoretical model to guarantee the stability. As in the previous research, the digital MIMO PPF control law is downloaded to the DSP chip and a main program, which runs genetic algorithms in real time, updates the parameters of the controller in real time. The experimental frequency response results show that the MIMO PPF controller tuned by GA gives better performance than the theoretically designed PPF. The time response also shows that the GA tuned MIMO PPF controller can suppress vibrations very well.

  • PDF

Effects of Real-time Visual Feedback Gait Training on Gait Stability in Older Adults (실시간 시각적 피드백 보행 훈련이 노인들의 보행 안정성에 미치는 영향)

  • Byun, Kyungseok;Han, Sooji;Bhang, Dawon;Seo, Hyundam;Lee, Hyo Keun
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.3
    • /
    • pp.247-253
    • /
    • 2020
  • Objective: This study aimed to examine the effects of real-time visual feedback gait training on gait stability in older adults. Method: Twelve older adults participated in this study, being divided into 2 groups including a) visual feedback (VF) and b) non-visual feedback (NVF) groups. For 4 weeks, VF performed a treadmill walking training with real-time visual feedback about their postural information while NVF performed a normal treadmill walking training. For evaluations of gait stability, kinematic data of 15-minute treadmill walking were collected from depth-based motion capture system (30 Hz, exbody, Korea). Given that step lengths in both right and left sides were determined based on kinematic data, three variables including step difference, coefficient of variation, approximate entropy were calculated to evaluate gait symmetry, variability and complexity, respectively. Results: For research findings, VF exhibited significant improvements in gait stability after 4-week training in comparison to NVF, particularly in gait symmetry and complexity measures. However, greater improvement in gait variability was observed in NVF than VF. Conclusion: Given that visual feedback walking gives potential effectiveness on gait stability in older adults, gait training with visual feedback may be a robust therapeutic intervention in people with gait disturbances like instability or falls.