• 제목/요약/키워드: Real-time driving

검색결과 684건 처리시간 0.032초

The Detection of Lanes and Obstacles in Real Time Using Optimal Moving Window

  • Park, Sung-Yug;Ju, Jae-Yul;Lee, Jang-Myung
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.889-893
    • /
    • 2000
  • In this paper, a method to detect lanes and obstacles from the images captured by a CCD camera fitted in an automobile is proposed, and a new terminology “Moving Window” is defined. Processing the input dynamic images in real time can cause quite a few constraints in terms of hardware. In order to overcome these problems and detect lanes and obstacles in real time using the images, the optimal size of “Moving Window” is determined, based upon road conditions and automobile states. The real time detection is made possible through the technique. For each image frame, the moving window is moved in a predicted direction, the accuracy of which is improved by the Kalman filter estimation. The feasibility of the proposed algorithm is demonstrated through the simulated experiments of freeway driving.

  • PDF

실시간 화재진압을 위한 원격조종 무인소방 시스템 (Tele-operation System of Unmaned Fire Truck for Real-time Fire Suppression)

  • 강병훈;이성철
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권6호
    • /
    • pp.1-6
    • /
    • 2022
  • 본 연구는 실시간으로 원격제어가 가능한 무인소방 시스템을 제안한다. 안전지대에 위치한 조종자가 화재현장에 투입된 무인 소방대차를 무선통신으로 원격조종함으로서 재난 및 긴급 상황에 신속하고 안전한 방재 작업을 진행할 수 있다. 이를 위하여, 소화전에 연결되어 고압으로 살수 작업이 가능한 무인 소방트럭에 대하여 제안하고, 이를 시제품으로 개발 하였다. 또한 LTE통신 상황에서 서로 다른 영상형식에 따른 시간지연과 FPS를 정량화하여, 효과적인 실시간 원격 조종 시스템에 대하여 제안하였다. 제안된 시스템의 검증을 위하여, 안전지대의 조종자와 무인소방대차를 3km 떨어진 곳에 위치시키고 주행테스트를 진행하였다. 무인소방대차를 LTE통신을 통하여 접속하고, 영상과 모션을 조종자에게 전달하여 평균 120msec의 시간지연으로 주행 테스트한 실험 결과를 제시한다.

PIV(Particle Imaging Velocimetry)에 의한 음향류의 실시간 가시화 계측 (Real time measurement of an acoustic stream by a visualization technique, PIV)

  • 도덕희
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 1호
    • /
    • pp.239-242
    • /
    • 1998
  • A new real time sound field visualization technique is introduced in this study using PIV(Particle Imaging Velocimetry) technique. Small particles of which density is small enough to follow up the air flow are used for sound visualization. When the driving frequency is in the vicinity of the resonance frequency of the simplified 2-dimensional muffler system, an acoustic streaming is shown and of which velocity distribution is obtained through PIV technique. It is experimentally proved that the present technique is able to visualize and quantify the sound field's energy flow.

  • PDF

실시간 임베디드 리눅스 기반 노약자 지원 로봇 개발 (Elderly Assistance System Development based on Real-time Embedded Linux)

  • 고재환;양길진;최병욱
    • 제어로봇시스템학회논문지
    • /
    • 제19권11호
    • /
    • pp.1036-1042
    • /
    • 2013
  • In this paper, an elderly assistance system is developed based on Xenomai, a real-time development framework cooperating with the Linux kernel. A Kinect sensor is used to recognize the behavior of the elderly and A-star search algorithm is implemented to find the shortest path to the person. The mobile robot also generates a trajectory using a digital convolution operator which is based on a Bezier curve for smooth driving. In order to follow the generated trajectory within the control period, we developed real-time tasks and compared the performance of the tracking trajectory with that of non real-time tasks. The real-time task has a better result on following the trajectory within the physical constraints which means that it is more appropriate to apply to an elderly assistant system.

Road Surface Data Collection and Analysis using A2B Communication in Vehicles from Bearings and Deep Learning Research

  • Young-Min KIM;Jae-Yong HWANG;Sun-Kyoung KANG
    • 한국인공지능학회지
    • /
    • 제11권4호
    • /
    • pp.21-27
    • /
    • 2023
  • This paper discusses a deep learning-based road surface analysis system that collects data by installing vibration sensors on the 4-axis wheel bearings of a vehicle, analyzes the data, and appropriately classifies the characteristics of the current driving road surface for use in the vehicle's control system. The data used for road surface analysis is real-time large-capacity data, with 48K samples per second, and the A2B protocol, which is used for large-capacity real-time data communication in modern vehicles, was used to collect the data. CAN and CAN-FD commonly used in vehicle communication, are unable to perform real-time road surface analysis due to bandwidth limitations. By using A2B communication, data was collected at a maximum bandwidth for real-time analysis, requiring a minimum of 24K samples/sec for evaluation. Based on the data collected for real-time analysis, performance was assessed using deep learning models such as LSTM, GRU, and RNN. The results showed similar road surface classification performance across all models. It was also observed that the quality of data used during the training process had an impact on the performance of each model.

Driving Simulator를 이용한 VMS 메시지 판독시간모형 개발 (A Model for VMS Message Reading Time Using Driving Simulator)

  • 김태형;김성민;오철;김정완
    • 한국ITS학회 논문지
    • /
    • 제6권3호
    • /
    • pp.24-32
    • /
    • 2007
  • VMS는 도로, 기상 및 교통 상황, 교통규제 상황에 관한 필요한 정보를 실시간으로 제공함으로써 교통흐름을 원활하게 하고 안전한 통행을 하도록 하는 시설이다. 그러나 기 구축된 VMS는 판독거리, 소실거리, 인지가능 메시지 수, 정보 당 판독시간 등 인간공학적 특성에 대한 적정한 연구 없이 설치 운영되고 있다. 본 연구에서는 Driving Simulator를 이용하여 다양한 정보량의 VMS 메시지를 표출하고 운전자의 정보량에 따른 판독시간을 측정하였다. 그리고 수집된 자료를 이용하여 VMS 메시지 판독시간 모형을 개발하고 보다 효과적인 메시지 설계를 위한 활용방안을 제시하였다는 점에서 그 의의가 있다.

  • PDF

차량주행 모사 조건에서 로드셀을 이용한 인젝터 누적 연료 분사량 측정 (A Cumulative Injected Fuel Mass Measurement Under a Vehicle Driven Condition using Loadcells)

  • 조성근;이충훈
    • 한국분무공학회지
    • /
    • 제21권1호
    • /
    • pp.1-6
    • /
    • 2016
  • A gasoline injector rig which can measure cumulative injected fuel mass under a vehicle driving condition was developed. The measurement system consists of an engine control unit (ECU), data acquisition (DAQ) and injected fuel collection system using loadcells. By supplying reconstructed sensor signals which simulate the real vehicle's sensor signals to the ECU, the ECU drives injectors as if they were driven in the vehicle. The vehicle's performance was computer simulated by using $GT-Suite^{(R)}$ software based on both engine part load performance and automatic transmission shift map. Throttle valve position, engine and vehicle speed, air mass flow rate et al. were computer simulated. The used vehicle driving pattern for the simulation was FTP-75 mode. For reconstructing the real vehicle sensor signals which are correspondent to the $GT-Suite^{(R)}$ simulated vehicle's performance, the DAQ systems were used. The injected fuel was collected with mess cylinders. The collected fuel mass in the mess cylinder with elapsed time after starting FTP-75 driving mode was measured using loadcells. The developed method shows highly improved performance in fast timing and accuracy of the cumulative injected fuel mass measurement under the vehicle driven condition.

전동열차의 주행에너지 소비를 절감하는 운전모드 해석 (Optimal Driving Mode Analysis for Reducing Energy Consumption in Electric Multiple Unit)

  • 김치태;김동환;박영일;한성호
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.174-183
    • /
    • 2005
  • A train driving requires to n the fixed distance within given time, and it is desirable to consume low energy if necessary. Reducing energy consumption depends on the train operation modes by either manual or automatic operation. In this article, an operation to reduce energy consumption by changing modes of train operation by a driver without changing the train operation requirement is investigated. The powering model, braking model and consumed energy calculation model are developed, then simulated by using a Matlab software. The accuracy of the train dynamic model established by the simulations is verified by comparing with the real experimental data. Several simulations by various operations in the real track are executed, then the desirable pattern of train driving is found.

차량의 동력전달장치 모델 개발에 관한 연구 (A Study on the Development of the Vehicle Powertrain Model)

  • 김광석
    • 한국기계기술학회지
    • /
    • 제13권3호
    • /
    • pp.17-23
    • /
    • 2011
  • To estimate fuel consumption of a vehicle, a car can be tested on chassis dynamometer. In this case, test causes a lot of time and money. To predict the fuel efficiency of vehicles in the design stage or early stage of development, the development of computer simulation model is necessary. Using simulation to predict the fuel consumption, the driving model which consists of time-velocity profile and time-grade profile is necessary In this study, vehicle model is developed in MatLab/simulink to estimate real driving fuel consumption rate with time-velocity profile, time-shift gear profile and time-grade profile. Vehicle model consists of driver model, engine model, power train model, and so on. On-road vehicle tests to verify the vehicle model are carried out for analyzing the result of simulation and comparing with those of the experiments.

A Study on an Intelligent Motion Control of Mobile Robot Based on Iterative Learning for Smart Factory

  • Im, Oh-Duck;Kim, Hee-Jin;Kang, Da-Bi;Kim, Min-Chan;Han, Sung-Hyun
    • 한국산업융합학회 논문집
    • /
    • 제25권4_1호
    • /
    • pp.521-531
    • /
    • 2022
  • This study proposed a new approach to intelligent control of a mobile robot system by back properpagation based on multi-layer neural network. A experiment result is given in which some artificial assumptions about the linear and the angluar velocities of mobile robots from recent literature are dropped. In this study, we proposed a new thinique to impliment the real time conrol of he position and velocity of mobile robots. With the proposed control techinique, mobile robots can now globally follow any path such as a straight line, a circle and the path approaching th toe origin using proposed controller. Computer simulations are presented, which confirm the effectiveness of the proposed control algorithm. Moreover, practical experimental results concerning the real time control are reported with several real line constraints for mobile robots with two wheel driving.