• 제목/요약/키워드: Real-time data analysis

검색결과 2,826건 처리시간 0.032초

MapReduce 환경에서의 실시간 LBS를 위한 이동궤적 데이터 색인 및 검색 시스템 설계 (Design of Trajectory Data Indexing and Query Processing for Real-Time LBS in MapReduce Environments)

  • 정재화
    • 디지털콘텐츠학회 논문지
    • /
    • 제14권3호
    • /
    • pp.313-321
    • /
    • 2013
  • 최근 모바일 스마트 기기의 보급으로 스마트 기기에 탑재된 다양한 센서에서 수집되는 대량이 데이터를 분석하여 처리하는 빅 데이터의 시대는 위치기반 서비스(LBSs: Location-Based Services)에 까지 확대대고 있다. 이동궤적에 대한 데이터도 초 대용량으로 증가하고 있다. 초 대용량 이동궤적 데이터 처리를 위해서는 클라우드 컴퓨팅 기술 및 맵리듀스와 같은 병행처리 플랫폼에 대한 연구가 필요하다. 최근 대용량 데이터의 병렬처리를 위해 맵리듀스 기반의 연구는 진행되고 있으나, 일괄처리 및 키-값 데이터 구조에 적합한 맵리듀스는 실시간 LBS에 적용에 적합하지 않다. 따라서 본 연구는 맵리듀스 특성을 면밀히 분석하고 실시간적 서비스에 적합하도록 모듈 단위로 효율적인 색인 기법 및 검색에 대한 시스템 설계를 제시한다.

A Study on the Establishment of Odor Management System in Gangwon-do Traditional Market

  • Min-Jae JUNG;Kwang-Yeol YOON;Sang-Rul KIM;Su-Hye KIM
    • 웰빙융합연구
    • /
    • 제6권2호
    • /
    • pp.27-31
    • /
    • 2023
  • Purpose: Establishment of a real-time monitoring system for odor control in traditional markets in Gangwon-do and a system for linking prevention facilities. Research design, data and methodology: Build server and system logic based on data through real-time monitoring device (sensor-based). A temporary data generation program for deep learning is developed to develop a model for odor data. Results: A REST API was developed for using the model prediction service, and a test was performed to find an algorithm with high prediction probability and parameter values optimized for learning. In the deep learning algorithm for AI modeling development, Pandas was used for data analysis and processing, and TensorFlow V2 (keras) was used as the deep learning library. The activation function was swish, the performance of the model was optimized for Adam, the performance was measured with MSE, the model method was Functional API, and the model storage format was Sequential API (LSTM)/HDF5. Conclusions: The developed system has the potential to effectively monitor and manage odors in traditional markets. By utilizing real-time data, the system can provide timely alerts and facilitate preventive measures to control and mitigate odors. The AI modeling component enhances the system's predictive capabilities, allowing for proactive odor management.

유효영상 획득을 위한 무인기 영상감시의 실시간 위치분석과 무선전송 기술에 관한 연구 (A Study on Real-Time Position Analysis and Wireless Transmission Technology for Effective Acquisition of Video Recording Information in UAV Video Surveillance)

  • 김환철;이창석;최정훈
    • 한국멀티미디어학회논문지
    • /
    • 제18권9호
    • /
    • pp.1047-1057
    • /
    • 2015
  • In this paper, we propose an effective wireless transmission technology, under poor wireless transmission channel surroundings caused by speedy flying, that are able to transmit high quality video recording information and surveillance data via accessing to various wireless networking services architecture such as One-on-One, Many-on-One, One-on-Many, Over the Horizon. The Real-Time Position Analysis(RAPA) method is also suggested to provide more meaningful video information of shooting area. The suggested wireless transmission technology and RAPA can make remote control of UAV's flight route to get valuable topography information. Because of the benefit to get both of video information and GPS data of shooting area simultaneously, the result of study can be applied to various application sphere including UAV that requires high speed wireless transmission.

IDL을 이용한 기상자료 3 차원 가시화 기술개발 연구 (Development of 3D Visualization Technology for Meteorological Data Using IDL)

  • 조민수;윤자영;서인범
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.77-80
    • /
    • 2002
  • The recent 3D visualization such as volume rendering, iso-surface rendering or stream line visualization gives more understanding about structures or distribution of data in a space and, moreover, the real-time rendering of a scene enables the animation of time-series data. Because the meteorological data is frequently formed as multi-variables, 3-dimensional and time-series data, the spatial analysis, time-series analysis, vector display, and animation techniques can do important roles to get more understanding about data. In this research, our aim is to develop the 3-dimensional visualization techniques for meteorological data in the PC environment by using IDL. The visualization technology from :his research will be used as basic technology not only for the deeper understanding and the more exact prediction about meteorological environments but also for the scientific and spatial data visualization research in any field from which three-dimensional data comes out such as oceanography, earth science, or aeronautical engineering.

  • PDF

실시간 철도안전 통합 감시제어시스템의 데이터 분산 서비스 품질 적합성 분석 (Quality Analysis for the Data Distribution Service of the Real-time Integrated Railway Safety Monitoring and Control System)

  • 김상암;김선우
    • 한국도시철도학회논문집
    • /
    • 제6권4호
    • /
    • pp.351-361
    • /
    • 2018
  • 본 논문에서는 실시간 통합 철도 안전 감시 시스템의 데이터 전송 품질 요구 사항을 만족시키기 위해 OMG DDS 표준에서 제공하는 네트워크 전송 품질을 제어 할 수 있는 DDS(Data Distribution Service) QoS(Quality of Service)에 관한 실험을 통한 분석을 진행하였다. '실시간 통합 철도 안전 감시제어시스템'은 철도 분야에서 다양한 센서의 데이터를 수집 및 분석하여 잠재적인 철도사고 위험을 예측하고 방지하는 시스템이다. 이 시스템에서 수집된 데이터를 정확하고 안정적으로 실시간으로 전송하려면 데이터 전송 품질을 보장해야 한다. 실험 결과에 따르면 DDS QoS를 사용하여 철도 안전을 모니터링하고 제어하기 위해 실시간으로 정확하고 안정적인 데이터 전송을 보장할 수 있다.

GIS 및 지구통계학을 이용한 실시간 통합계측관리 프로그램 개발 (Development of Real Time Monitoring Program Using Geostatistics and GIS)

  • 한병원;박재성;이대형;이계춘;김성욱
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1046-1053
    • /
    • 2006
  • In the large scale recent reclaiming works performed within the wide spatial boundary, evaluation of long-term consolidation settlement and residual settlement of the whole construction area is sometimes made with the results of the limited ground investigation and measurement. Then the reliability of evaluation has limitations due to the spatial uncertainty. Additionally, in case of large scale deep excavation works such as urban subway construction, there are a lot of hazardous elements to threaten the safety of underground pipes or adjacent structures. Therefore it is necessary to introduce a damage prediction system of adjacent structures and others. For the more accurate analysis of monitoring information in the wide spatial boundary works and large scale urban deep excavations, it is necessary to perform statistical and spatial analysis considering the geographical spatial effect of ground and monitoring information in stead of using diagrammatization method based on a time-series data expression that is traditionally used. And also it is necessary that enormous ground information and measurement data, digital maps are accumulated in a database, and they are controlled in a integrating system. On the abovementioned point of view, we developed Geomonitor 2.0, an Internet based real time monitoring program with a new concept by adding GIS and geo-statistical analysis method to the existing real time integrated measurement system that is already developed and under useful use. The new program enables the spatial analysis and database of monitoring data and ground information, and helps the construction- related persons make a quick and accurate decision for the economical and safe construction.

  • PDF

실시간 IoT 데이터를 활용한 고객 관계 관리 방안에 관한 연구 (A Study on the Customer Relationship Management Method Using Real-Time IoT Data)

  • 배지원;백동현
    • 산업경영시스템학회지
    • /
    • 제42권2호
    • /
    • pp.69-77
    • /
    • 2019
  • As information technology advances, the penetration of smart devices connected to the Internet, such as smart phone and tablet PC, has rapidly expanded, and as sensor prices have fallen the Internet of Things has begun to be introduced in the industry. Today's industry is rapidly changing and evolving, requiring companies to respond to the new paradigm of business. In this situation, companies need to actively manage and maintain customer relationships in order to acquire loyal customers who bring them a high return. The purpose of this study is to suggest a method to manage customer relationship using real time IoT data including IoT product usage data, customer characteristics and transaction data. This study proposes a method of segmenting customers through RFM analysis and transition index analysis. In addition, a real-time monitoring through control charts is used to identify abnormalities in product use and suggest ways of differentiating marketing for each group. In the study, 44 samples were classified as 9 churn customers, 10 potential customers, and 25 active customers. This study suggested ways to induce active customers by providing after-sales benefit for product reuse to a group of churn customers and to promote the advantages or necessity of using the product by setting the goal of increasing the frequency of use to a group of potential customers. Finally, since the active customer group is a loyal customer, this study proposed an one-on-one marketing to improve product satisfaction.

Forecasting Symbolic Candle Chart-Valued Time Series

  • Park, Heewon;Sakaori, Fumitake
    • Communications for Statistical Applications and Methods
    • /
    • 제21권6호
    • /
    • pp.471-486
    • /
    • 2014
  • This study introduces a new type of symbolic data, a candle chart-valued time series. We aggregate four stock indices (i.e., open, close, highest and lowest) as a one data point to summarize a huge amount of data. In other words, we consider a candle chart, which is constructed by open, close, highest and lowest stock indices, as a type of symbolic data for a long period. The proposed candle chart-valued time series effectively summarize and visualize a huge data set of stock indices to easily understand a change in stock indices. We also propose novel approaches for the candle chart-valued time series modeling based on a combination of two midpoints and two half ranges between the highest and the lowest indices, and between the open and the close indices. Furthermore, we propose three types of sum of square for estimation of the candle chart valued-time series model. The proposed methods take into account of information from not only ordinary data, but also from interval of object, and thus can effectively perform for time series modeling (e.g., forecasting future stock index). To evaluate the proposed methods, we describe real data analysis consisting of the stock market indices of five major Asian countries'. We can see thorough the results that the proposed approaches outperform for forecasting future stock indices compared with classical data analysis.

Python을 이용한 SNS 크롤링 시스템 구축 (Building an SNS Crawling System Using Python)

  • 이종화
    • 한국산업정보학회논문지
    • /
    • 제23권5호
    • /
    • pp.61-76
    • /
    • 2018
  • 현대인이 살고 있는 네트워크 세상으로 모든 사물들이 들어오고 있다. 사물에 센서를 부착하는 사물인터넷의 영향으로 인해 네트워크로 실시간 데이터를 주고받는 것이 가능해졌다. 현대인들의 필수품인 모바일 디바이스는 일상생활의 모든 자취를 실시간으로 남기는 역할을 하고 있다. 바로 소셜 네트워크 서비스를 통하여 정보획득 활동과 커뮤니케이션 활동을 실시간으로 거대한 네트워크에 남기고 있는 것이다. 비즈니스 관점에서 고객의 니즈 분석은 바로 SNS 자료에서부터 시작된다는 등가가 성립된다. 본 연구는 웹 환경의 SNS 콘텐츠를 파이썬을 이용하여 실시간으로 자동 수집시스템을 구축하고자 한다. 세계적으로 많은 이용자수를 확보하고 있는 인스타그램, 트위터, 유튜브의 비정형적 데이터 수집 시스템을 통하여 고객의 니즈 분석에 도움이 되고자 한다. 파이썬의 웹드라이버 환경에서 가상 웹브라우저를 이용하여 마이닝 처리와 NLP 과정을 거쳐 DB에 저장된다. 본 연구의 결과 웹페이지를 통하여 서비스를 진행하고자하며 검색 기능만으로 원하는 데이터가 자동 수집되며 데이터의 시계열 분석을 통하여 네티즌의 이슈 반응을 실시간으로 확인할 수 있었다. 또한 검색부터 실행결과가 나오기까지 5초 이내 이루어지므로 제시된 알고리즘의 우수성을 확인하였다.

Real-Time Locomotion Mode Recognition Employing Correlation Feature Analysis Using EMG Pattern

  • Kim, Deok-Hwan;Cho, Chi-Young;Ryu, Jaehwan
    • ETRI Journal
    • /
    • 제36권1호
    • /
    • pp.99-105
    • /
    • 2014
  • This paper presents a new locomotion mode recognition method based on a transformed correlation feature analysis using an electromyography (EMG) pattern. Each movement is recognized using six weighted subcorrelation filters, which are applied to the correlation feature analysis through the use of six time-domain features. The proposed method has a high recognition rate because it reflects the importance of the different features according to the movements and thereby enables one to recognize real-time EMG patterns, owing to the rapid execution of the correlation feature analysis. The experiment results show that the discriminating power of the proposed method is 85.89% (${\pm}2.5$) when walking on a level surface, 96.47% (${\pm}0.9$) when going up stairs, and 96.37% (${\pm}1.3$) when going down stairs for given normal movement data. This makes its accuracy and stability better than that found for the principal component analysis and linear discriminant analysis methods.