• 제목/요약/키워드: Real-time analysis system

Search Result 3,096, Processing Time 0.035 seconds

Performance Analysis of Checkpointing and Dual Modular Redundancy for Fault Tolerance of Real-Time Control System (실시간 제어 시스템의 결함 극복을 위한 이중화 구조와 체크포인팅 기법의 성능 분석)

  • Ryu, Sang-Moon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.376-380
    • /
    • 2008
  • This paper deals with a performance analysis of real-time control systems, which engages DMR(dual modular redundancy) to detect transient errors and checkpointing technique to tolerate transient errors. Transient errors are caused by transient faults and the most significant type of errors in reliable computer systems. Transient faults are assumed to occur according to a Poisson process and to be detected by a dual modular redundant structure. In addition, an equidistant checkpointing strategy is considered. The probability of the successful task completion in a real-time control system where periodic checkpointing operations are performed during the execution of a real-time control task is derived. Numerical examples show how checkpoiniting scheme influences the probability of task completion. In addition, the result of the analysis is compared with the simulation result.

Design and Analysis of Communication Network in a Real-time Train Information System (실시간 열차 정보 시스템에서의 차량간 광통신의 설계와 해석)

  • Kwon, O.S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.534-538
    • /
    • 1995
  • In this paper, a realization of a real-time train information system(TIS) is discussed. The requirements of TIS which satisfy real-time constraints are analyzed in view of data transfer. For efficient data communication in TIS, a new network system is suggested and its real-time characteristics are analyzed and compared with the standard network system. A local unit is designed based on VMEbus system.

  • PDF

The Development of Real-Time Harmonic Analysis Algorithm in Distribution Transformer (배전용 변압기의 실시간 고조파 분석 알고리즘 개발)

  • Park, Chul-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.43-49
    • /
    • 2013
  • Recently harmonics flowing into power system is increasing as the usage of semiconductor equipments and switching mode power equipments are increasing. Harmonics cause problems such as heat increasing and reduction in capacity of transformers, especially the harmonics flowing into a distribution transformer can lead to the lifetime reduction of transformer. In this paper, we are about to develop a device that can monitor harmonics in real-time as it is affixed to a distribution transformer. Unlike the existing expensive harmonic analysis device, a new harmonic analysis algorithm is proposed in order to implement low-cost equipment. The real-time harmonic analysis algorithm proposed in this paper allows implementation on low performance microcontrollers, thus it can monitor the harmonic in real-time as it is individually affixed to the transformer. Therefore, it would improve the reliability of the transformer and stable power system operation would be possible as it can prevent the transformer accidents in advance.

Heterogeneous Operating Systems Integrated Trace Method for Real-Time Virtualization Environment (다중 코어 기반의 실시간 가상화 시스템을 위한 이종 운영체제 통합 성능 분석 방법에 관한 연구)

  • Kyong, Joohyun;Han, In-Kyu;Lim, Sung-Soo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.4
    • /
    • pp.233-239
    • /
    • 2015
  • This paper describes a method that is integrated trace for real-time virtualization environment. This method has solved the problem that the performance trace may not be able to analyze integrated method between heterogeneous operating systems which is consists of real-time operating systems and general-purpose operating system. In order to solve this problem, we have attempted to reuse the performance analysis function in general-purpose operating system, thereby real-time operating systems can be analyzed along with general-operating system. Furthermore, we have implemented a prototype based on ARM Cortex-A15 dual-core processor. By using this integrated trace method, real-time system developers can be improved productivity and reliability of results on real-time virtualization environment.

A derivation of real-time simulation model on the large-structure driving system and its application to the analysis of system interface characteristics (대형구조물 구동계통 실시간 시뮬레이션 모델 유도 및 연동 특성 분석에의 응용)

  • Kim, Jae-Hun;Choi, Young-Ho;Yoo, Woong-Jae;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.13-25
    • /
    • 2000
  • A simulation model is developed to analyze the large-structure driving system and its integrated behavior in the whole weapon system. It models every component in the driving system such as mechanical and electrical characteristics, and it is programmed by simulation language in a way which strongly reflects the system's real time dynamics and reduces computation time as well. A useful parameter identification method is proposed, and it is tuned on the given physical system. The model is validated through comparing to real test, and it is applied to analysis and prediction of integrated system functions relating to the fire control system.

  • PDF

On Benchmarking of Real-time Mechanisms in Various Periodic Tasks for Real-time Embedded Linux (실시간 임베디드 리눅스에서 다양한 주기적 타스크의 실시간 메커니즘 성능 분석)

  • Koh, Jae-Hwan;Choi, Byoung-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.4
    • /
    • pp.292-298
    • /
    • 2012
  • It is a real-time system that the system correctness depends not only on the correctness of the logical result of the computation but also on the result delivery time. Real-time Operating System (RTOS) is a software that manages the time of a microprocessor to ensure that the most important code runs first so that it is a good building block to design the real-time system. The real-time performance is achieved by using real-time mechanisms through data communication and synchronization of inter-task communication (ITC) between tasks. Therefore, test on the response time of real-time mechanisms is a good measure to predict the performance of real-time systems. This paper aims to analysis the response characteristics of real-time mechanisms in kernel space for real-time embedded Linux: RTAI and Xenomai. The performance evaluations of real-time mechanism depending on the changes of task periods are conducted. Test metrics are jitter of periodic tasks and response time of real-time mechanisms including semaphore, real-time FIFO, Mailbox and Message queue. The periodicity of tasks is relatively consistent for Xenomai but RTAI reveals smaller jitter as an average result. As for real-time mechanisms, semaphore and message transfer mechanism of Xenomai has a superior response to estimate deterministic real-time task execution. But real-time FIFO in RTAI shows faster response. The results are promising to estimate deterministic real-time task execution in implementing real-time systems using real-time embedded Linux.

CIM-Based System For Real-Time Voltage Stability Analysis (CIM 기반의 실시간 전압안정도 해석 시스템 구축)

  • Lee, Sung-Woo;Jang, Moon-Jong;Seo, Dong-Wan;Namkoong, Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.10
    • /
    • pp.41-49
    • /
    • 2013
  • There is a wide variety of system and applications in the power system. However, they have compatibility issues because they use different data standard and communication method. With the introduction of the smart grid, power system has been grow and diversified. Therefore power system need to be compatible with each other and the interoperability between applications is increasingly important. Thus, the IEC established IEC61970 and CIM Standard data exchange model for interoperability and system integration. Server-Client system was constructed which using CIM HSDA(Part4), a standard communication model, presented in IEC 619710. Also, self-developed real-time voltage stability analysis application and contingency analysis application was used. CIM HSDA was used for data input and real-time analysis. Tolerance of result which is in the range of allowable derived by Perform real-time voltage stability and contingency analysis of Jeju power system, and then compare it's result with PSS/E result.

Implementation of Worst Case Execution Time Analysis Tool For Embedded Software based on XScale Processor (XScale 프로세서 기반의 임베디드 소프트웨어를 위한 최악실행시간 분석도구의 구현)

  • Park, Hyeon-Hui;Choi, Myeong-Su;Yang, Seung-Min;Choi, Yong-Hoon;Lim, Hyung-Taek
    • The KIPS Transactions:PartA
    • /
    • v.12A no.5 s.95
    • /
    • pp.365-374
    • /
    • 2005
  • Schedulability analysis is necessary to build reliable embedded real-time systems. For schedulability analysis, worst-case execution time(WCET) analysis that computes upper bounds of the execution times of tasks, is required indispensably. WCET analysis is done in two phases. The first phase is high-level analysis that analyzes control flow and finds longest paths of the program. The second phase is low-level analysis that computes execution cycles of basic blocks taking into account the hardware architecture. In this thesis, we design and implement integrated WCET analysis tools. We develop the WCET analysis tools for XScale-based system called WATER(WCET Analysis Tool for Embedded Real-time system). WATER consist of high-level flow analyzer and low-level execution time analyzer. Also, We compare real measurement for execution of program with analysis result calculated by WATER.

All Implementation and Performance Analysis of Priority Model of Real-Time CORBA (실시간 CORBA의 우선순위 모델 구현 및 성능분석)

  • 박순례;정선태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.89-89
    • /
    • 2000
  • The Current CORBA has many drawbacks to be deployed successfully in real-time system applications. Recently, OMG adopted Real-Time CORBA specification. In this paper, we report our efforts on an implementation of Priority Model of Real-Time CORBA spec., which is one of the most important components in Real-Time CORBA spec. The improvement of real-time performances of our implementation is verified experiments.

  • PDF

A Real-time Multibody Vehicle Dynamics and Control Model for a Virtual Reality Intelligent Vehicle Simulator (가상현실 지능형 차량 시뮬레이터를 위한 실시간 다물체 차량 동역학 및 제어모델)

  • 김성수;손병석;송금정;정상윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.173-179
    • /
    • 2003
  • In this paper, a real-time multibody vehicle dynamics and control model has been developed for a virtual reality intelligent vehicle simulator. The simulator consists of low PCs for a virtual reality visualization system, vehicle dynamics and control analysis system a control loading system, and a network monitoring system. Virtual environment is created by 3D Studio Max graphic tool and OpenGVS real-time rendering library. A real-time vehicle dynamics and control model consists of a control module based on the sliding mode control for adaptive cruise control and a real-time multibody vehicle dynamics module based on the subsystem synthesis method. To verify the real-time capability of the model, cut-in, cut-out simulations have been carried out.