• Title/Summary/Keyword: Real-time Ultrasound

Search Result 188, Processing Time 0.028 seconds

The Convergence Study on the Effects of Three Pelvic Floor Muscle Excercise on Thickness of Pelvic Floor Muscle and Abdominal Muscles (골반바닥근 운동방법이 골반바닥근과 몸통근육의 근두께에 미치는 영향에 대한 융합적 연구)

  • Kang, Si-Eun;Shim, Jae-Hoon;Choung, Sung-Dae
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.1
    • /
    • pp.105-111
    • /
    • 2016
  • The purpose of this study was to investigate effects of three pelvic floor muscle (PFM) exercises on the thickness of PFM and transverse abdominal muscle (TrA), the internal oblique muscle, and the external oblique muscle. The PFM and trunk muscles were measured using ultrasonography in 4 conditions.rest, conventional PFM contraction (Ex A), PFM contraction with hip adductor contraction (Ex B), and PFM contraction with real-time ultrasound imaging (Ex C). The thickness of PFM in Ex C showed a significantly more decrease compared to rest and others (all comparisons, p<.05). The thickness of TrA in Ex C showed a significantly more increase compared to rest and others (all comparisons, p<.05). This study would recommend the use of PFM contraction with real-time ultrasonographic imaging to improve women's incontinence.

Evaluation on the Usefulness of Ultrasound Image Speckle Reduction Using Total Variation Denoising (TVD) Method in Laplacian Pyramid (라플라시안 피라미드 기반 총변동 잡음제거 기법을 이용한 초음파 영상 스펙클 제거 유용성 평가)

  • Moon, J.H.;Choi, D.H.;Lee, S.Y.;Tae, Ki-Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.140-146
    • /
    • 2016
  • The ultrasound imaging in medical diagnosis has become a popular modality because of its safe, noninvasive, portable, relatively inexpensive, and provides a real-time image formation. However, usefulness of ultrasound imaging is at times limited due to the presence of signal-dependent noise like as speckle. Therefore, noise reduction is very important, as various types of noise generated limits the effectiveness of medical image diagnosis. This paper introduces a speckle noise reduce algorithm using total variation denoising (TVD) in Laplacian pyramid. With this method, speckle is removed by TVD of bandpass ultrasound images in Laplacian pyramid domain. For TVD in each pyramid layer, a ${\lambda}$ is selected by trial-and-error method. The visual comparison of despeckled 'in vivo' ultrasound images from pancreas shows that the proposed method could effectively preserve edges and detailed structures while thoroughly suppressing speckle. For a Simulated B-mode image, contrast-to-noise-ratio (CNR) and signal-to-noise-ratio (SNR) were obtained like 4.65 dB and 14.11 dB, respectively. The results show that the proposed method can conduct better than some of the existing methods in terms of the CNR and the SNR.

Study on Growth Curves of Longissimus dorsi Muscle Area, Backfat Thickness and Body Conformation for Hanwoo (Korean Native) Cows

  • Lee, J.H.;Oh, S.H.;Lee, Y.M.;Kim, Y.S.;Son, H.J.;Jeong, D.J.;Whitley, N.C.;Kim, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.9
    • /
    • pp.1250-1253
    • /
    • 2014
  • The objective of this study was to estimate the parameters of Gompertz growth curves with the measurements of body conformation, real-time ultrasound longissimus dorsi muscle area (LMA) and backfat thickness (BFT) in Hanwoo cows. The Hanwoo cows (n = 3,373) were born in 97 Hanwoo commercial farms in the 17 cities or counties of Gyeongbuk province, Korea, between 2000 and 2007. A total of 5,504 ultrasound measurements were collected for the cows at the age of 13 to 165 months in 2007 and 2008. Wither height (HW), rump height (HR), the horizontal distance between the top of the hips (WH), and girth of chest (GC) were also measured. Analysis of variance was conducted to investigate variables affecting LMA and BFT. The effect of farm nested in location was included in the statistical model, as well as the effects of HW, HR, WH, and GC as covariates. All of the effects were significant in the analysis of variance for LMA and BFT (p<0.01), except for the HR effect for LMA. The two ultrasound measures and the four body conformation traits were fitted to a Gompertz growth curve function to estimate parameters. Upper asymptotic weights were estimated as $54.0cm^2$, 7.67 mm, 125.6 cm, 126.4 cm, 29.3 cm, and 184.1 cm, for LMA, BFT, HW, HR, WH, and GC, respectively. Results of ultrasound measurements showed that Hanwoo cows had smaller LMA and greater BFT than other western cattle breeds, suggesting that care must be taken to select for thick BFT rather than an increase of only beef yield. More ultrasound records per cow are needed to get accurate estimates of growth curve, which, thus, helps producers select animals with high accuracy.

Comparison of real-time ultrasound imaging for manual lymphatic drainage on breast cancer-related lymphedema in individuals with breast cancer: a preliminary study

  • Seo, Dongkwon;Lee, Seungwon;Choi, Wonjae
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.1
    • /
    • pp.43-48
    • /
    • 2020
  • Objective: Breast cancer-related lymphedema (BCRL) is a major sequela after surgery or radiotherarpy for breast cancer. Manual lymphatic drainage (MLD) is designed to reduce lymph swelling by facilitating lymphatic drainage. This study attempted to determine the histologic changes in the skin and subcutaneous layer, and the immediate effect of MLD in decreasing lymphedema using ultrasound imaging, which is the method used most commonly to eliminate BCRL. Design: A single-group experimental study. Methods: Five subjects who were diagnosed with hemiparetic upper extremity lymphedema more than six months after breast cancer surgery participated in the study. MLD was performed for 60 minutes in the order of the thorax, breast, axilla, and upper arm of the affected side. In order to determine the effect of MLD, ultrasound imaging and limb volume were assessed. Two measurement tools were used for asessing lymphedema thickness among the pretest, posttest, and 30-minute follow-up period. Results: Significant diferences in ultrasound imaging and upper limb volume were found between the affected side and non-affected side (p<0.05). On the affected side, although ultrasound imaging showed a significant decrease after MLD (p<0.05), there were no significant difference in upper limb volume when compared to the baseline. Conclusions: In this study, a significant decrease in lymphedema by MLD was demonstrated by ultrasound imaging, which is considered to be more useful in assessing histological changes than limb volume measurements. Further research on the protocol for eliminating lymphedema will be needed.

Multistage Transfer Learning for Breast Cancer Early Diagnosis via Ultrasound (유방암 조기 진단을 위한 초음파 영상의 다단계 전이 학습)

  • Ayana, Gelan;Park, Jinhyung;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.134-136
    • /
    • 2021
  • Research related to early diagnosis of breast cancer using artificial intelligence algorithms has been actively conducted in recent years. Although various algorithms that classify breast cancer based on a few publicly available ultrasound breast cancer images have been published, these methods show various limitations such as, processing speed and accuracy suitable for the user's purpose. To solve this problem, in this paper, we propose a multi-stage transfer learning where ResNet model trained on ImageNet is transfer learned to microscopic cancer cell line images, which was again transfer learned to classify ultrasound breast cancer images as benign and malignant. The images for the experiment consisted of 250 breast cancer ultrasound images including benign and malignant images and 27,200 cancer cell line images. The proposed multi-stage transfer learning algorithm showed more than 96% accuracy when classifying ultrasound breast cancer images, and is expected to show higher utilization and accuracy through the addition of more cancer cell lines and real-time image processing in the future.

  • PDF

A study on the real time fetal heart rate monitoring system by high resolution pitch detection algorithm (고해상 피치 검출 알고리듬을 적용한 실시간 태아 심음 감시시스템에 관한 연구)

  • 이응구;이두수
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.175-182
    • /
    • 1995
  • Despite the simplicity of processing, a conventional autocorrelation function (ACF) method for the precise determination of fetal heart rate (FHR) has many problems. In case of weak or noise corrupted Doppler ultrasound signal, the ACF method is very sensitive to the threshold level and data window length. It is very troublesome to extract FHR when there is a data loss. To overcome these problems, the high resolution pitch detection algorithm was adopted to estimate the FHR. This method is more accurate, robust and reliable than the ACF method. With a lot of calculation, however, it is impossible to process real time FHR estimation. This paper is presented a new FHR estimation algorithm for real time processing and studied the real time FHR monitoring system by high resolution pitch detection algorithm.

  • PDF

Ultrasound Targeted Microbubble Destruction for Novel Dual Targeting of HSP72 and HSC70 in Prostate Cancer

  • Wang, Hang-Hui;Song, Yi-Xin;Bai, Min;Jin, Li-Fang;Gu, Ji-Ying;Su, Yi-Jin;Liu, Long;Jia, Chao;Du, Lian-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1285-1290
    • /
    • 2014
  • The aim was to determine whether ultrasound targeted microbubble destruction (UTMD) promotes dual targeting of HSP72 and HSC70 for therapy of castration-resistant prostate cancer (CRPC), to improve the specific and efficient delivery of siRNA, to induce tumor cell specific apoptosis, and to find new therapeutic targets specific of CRPC.VCaP cells were transfected with siRNA oligonucleotides. HSP70, HSP90 and cleaved caspase-3 expression were determined by real-time quantitative polymerase chain reaction and Western blotting. Apoptosis and transfection efficiency were assessed by flow cytometry. Cell viability assays were used to evaluate safety. We found HSP72, HSC70 and HSP90 expression to be absent or weak in normal prostate epithelial cells (RWPE-1), but uniformly strong in prostate cancerous cells (VCaP). UTMD combined with dual targeting of HSP72 and HSC70 siRNA improve the efficiency of transfection, cell uptake of siRNA, downregulation of HSP70 and HSP90 expression in VCaP cells at the mRNA and protein level, and induction of extensive tumor-specific apoptosis. Cell counting kit-8 assays showed decreased cellular viability in the HSP72/HSC70-siRNA silenced group. These results suggest that the combination of UTMD with dual targeting HSP70 therapy for PCa may be most efficacious, providng a novel, reliable, non-invasive, safe targeted approach to improve the specific and efficient delivery of siRNA, and achieve maximal effects.

Ultrasound-optical imaging-based multimodal imaging technology for biomedical applications (바이오 응용을 위한 초음파 및 광학 기반 다중 모달 영상 기술)

  • Moon Hwan Lee;HeeYeon Park;Kyungsu Lee;Sewoong Kim;Jihun Kim;Jae Youn Hwang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.429-440
    • /
    • 2023
  • This study explores recent research trends and potential applications of ultrasound optical imaging-based multimodal technology. Ultrasound imaging has been widely utilized in medical diagnostics due to its real-time capability and relative safety. However, the drawback of low resolution in ultrasound imaging has prompted active research on multimodal imaging techniques that combine ultrasound with other imaging modalities to enhance diagnostic accuracy. In particular, ultrasound optical imaging-based multimodal technology enables the utilization of each modality's advantages while compensating for their limitations, offering a means to improve the accuracy of the diagnosis. Various forms of multimodal imaging techniques have been proposed, including the fusion of optical coherence tomography, photoacoustic, fluorescence, fluorescence lifetime, and spectral technology with ultrasound. This study investigates recent research trends in ultrasound optical imaging-based multimodal technology, and its potential applications are demonstrated in the biomedical field. The ultrasound optical imaging-based multimodal technology provides insights into the progress of integrating ultrasound and optical technologies, laying the foundation for novel approaches to enhance diagnostic accuracy in the biomedical domain.

Real-Time 3D Ultrasound Imaging Method Using a Cross Array Based on Synthetic Aperture Focusing: I. Spherical Wave Transmission Approach (합성구경 기반의 교차어레이를 이용한 실시간 3차원 초음파 영상화 기법 : I. 구형파 송신 방법)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.391-401
    • /
    • 2004
  • 3D imaging systems using 2D phased arrays have a large number of active channels, compelling to use a very expensive and bulky beamforming hardware, and suffer from low volume rate because, in principle, at least one ultrasound transmit-receive event is necessary to construct each scanline. A high speed 3D imaging method using a cross array proposed previously to solve the above limitations can implement fast scanning and dynamic focusing in the lateral direction but suffer from low resolution except at the fixed transmit focusing along the elevational direction. To overcome these limitations, we propose a new real-time volumetric imaging method using a cross array based on the synthetic aperture technique. In the proposed method, ultrasound wave is transmitted successively using each elements of an 1D transmit array transducer, one at a time, which is placed along the elevational direction and for each firing, the returning pulse echoes are received using all elements of an 1D receive array transducer placed along the lateral direction. On receive, by employing the conventional dynamic focusing and synthetic aperture method along lateral and elevational directions, respectively, ultrasound waves can be focused effectively at all imaging points. In addition, in the proposed method, a volume of interest consisting of any required number of slice images, can be constructed with the same number of transmit-receive steps as the total number of transmit array elements. Computer simulation results show that the proposed method can provide the same and greatly improved resolutions in the lateral and elevational directions, respectively, compared with the 3D imaging method using a cross array based on the conventional fixed focusing. In the accompanying paper, we will also propose a new real-time 3D imaging method using a cross array for improving transmit power and elevational spatial resolution, which uses linear wave fronts on transmit.

A GPU-based Filter Algorithm for Noise Improvement in Realtime Ultrasound Images (실시간 초음파 영상에서 노이즈 개선을 위한 GPU 기반의 필터 알고리즘)

  • Cho, Young-Bok;Woo, Sung-Hee
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1207-1212
    • /
    • 2018
  • The ultrasound image uses ultrasonic pulses to receive the reflected waves and construct an image necessary for diagnosis. At this time, when the signal becomes weak, noise is generated and a slight difference in brightness occurs. In addition, fluctuation of image due to breathing phenomenon, which is the characteristic of ultrasound image, and change of motion in real time occurs. Such a noise is difficult to recognize and diagnose visually in the analysis process. In this paper, morphological features are automatically extracted by using image processing technique on ultrasound acquired images. In this paper, we implemented a GPU - based fast filter using a cloud big data processing platform for image processing. In applying the GPU - based high - performance filter, the algorithm was run with performance 4.7 times faster than CPU - based and the PSNR was 37.2dB, which is very similar to the original.