• Title/Summary/Keyword: Real-time Task

Search Result 756, Processing Time 0.039 seconds

UbiFOS: A Small Real-Time Operating System for Embedded Systems

  • Ahn, Hee-Joong;Cho, Moon-Haeng;Jung, Myoung-Jo;Kim, Yong-Hee;Kim, Joo-Man;Lee, Cheol-Hoon
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.259-269
    • /
    • 2007
  • The ubiquitous flexible operating system (UbiFOS) is a real-time operating system designed for cost-conscious, low-power, small to medium-sized embedded systems such as cellular phones, MP3 players, and wearable computers. It offers efficient real-time operating system services like multi-task scheduling, memory management, inter-task communication and synchronization, and timers while keeping the kernel size to just a few to tens of kilobytes. For flexibility, UbiFOS uses various task scheduling policies such as cyclic time-slice (round-robin), priority-based preemption with round-robin, priority-based preemptive, and bitmap. When there are less than 64 tasks, bitmap scheduling is the best policy. The scheduling overhead is under 9 ${\mu}s$ on the ARM926EJ processor. UbiFOS also provides the flexibility for user to select from several inter-task communication techniques according to their applications. We ported UbiFOS on the ARM9-based DVD player (20 kB), the Calm16-based MP3 player (under 7 kB), and the ATmega128-based ubiquitous sensor node (under 6 kB). Also, we adopted the dynamic power management (DPM) scheme. Comparative experimental results show that UbiFOS could save energy up to 30% using DPM.

  • PDF

An On-line Algorithm to Search Minimum Total Error for Imprecise Real-time Tasks with 0/1 Constraint

  • Song Gi-Hyeon
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.12
    • /
    • pp.1589-1596
    • /
    • 2005
  • The imprecise real-time system provides flexibility in scheduling time-critical tasks. Most scheduling problems of satisfying both 0/1 constraint and timing constraints, while the total error is minimized, are NP complete when the optional tasks have arbitrary processing times. Liu suggested a reasonable strategy of scheduling tasks with the 0/1 constraint on uniprocessors for minimizing the total error. Song et al suggested a reasonable strategy of scheduling tasks with the 0/1 constraint on multiprocessors for minimizing the total error. But, these algorithms are all off-line algorithms. On the other hand, in the case of on line scheduling, Shih and Liu proposed the NORA algorithm which can find a schedule with the minimum total error for a task system consisting solely of on-line tasks that are ready upon arrival. But, for the task system with 0/1 constraint, it has not been known whether the NORA algorithm can be optimal or not in the sense that it guarantees all mandatory tasks are completed by their deadlines and the total error is minimized. So, this paper suggests an optimal algorithm to search minimum total error for the imprecise on-line real-time task system with 0/1 constraint. Furthermore, the proposed algorithm has the same complexity, O(N log N), as the NORA algorithm, where N is the number of tasks.

  • PDF

Effective Real-Time Scheduling in Composite Task Model (복합 태스크 모델에 대한 효율적인 실시간 스케쥴링)

  • Kim, In-Guk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1568-1579
    • /
    • 1996
  • Most of the real-time scheduling algorithms assume that all tasks are either preemptive or nonpreemptive. In this paper, we present a real-time scheduling algorithm for the more generalized task model in which each task contains both preemptive and nonpreemptive subtasks in a single processor environment. If the task set is found to be scheduling by the method of Harbour et al, it is also found to be scheduling by the proposed method. A simulation is used ti compare two methods and the result shows the maximum of 45% difference between them in their effectiveness.

  • PDF

A Real-Time Embedded Task Scheduler considering Fault-Tolerant (결함허용을 고려한 실시간 임베디드 태스크 스케줄러)

  • Jeon, Tae-Gun;Kim, Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.7
    • /
    • pp.940-948
    • /
    • 2011
  • In this paper, we design and implement a task scheduler that considers real-time and fault tolerance in embedded system with a single processor. We propose a method how it can meet the deadlines of periodic tasks using RMS and complete the execution of aperiodic tasks by calculating surplus times from a periodic task set. And we describe a method how to recover of a transient fault task by managing backup time. We propose an important level of periodic tasks that can control the response time of periodic and aperiodic tasks. Finally, we analyse and evaluate the proposed methods by simulation.

A Study of Real-Time System(RTS) Efficiency in e-Trade (전자무역의 RTS 효율성에 관한 연구)

  • Jeong Boon-Do
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.783-791
    • /
    • 2006
  • In e-Trade, Real-Time System(RTS) plays a very important role. Each task is set with limited time, and appointed regulations must be followed because it can be greatly damaged if it cannot be executed in limited time. In e-Trade, the scheduling possibility techniques generally use periodical tasks; however, it is necessary to study more stable prediction scheduling possibility algorithm by using other task timing conditions and non-periodical task scheduling tasks. This study proposed an algorithm to increase the prediction possibility using individual task utilization rate, and presented scheduling possibility conditions using existing whole task utilization rate and the proposed algorithm.

A Probabilistic Analysis for Periodicity of Real-time Tasks

  • Delgado, Raimarius;Choi, Byoung Wook
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.134-142
    • /
    • 2021
  • This paper proposes a probabilistic method in analyzing timing measurements to determine the periodicity of real-time tasks. The proposed method fills a gap in existing techniques, which either concentrate on the estimation of worst-case execution times, or do not consider the stochastic behavior of the real-time scheduler. Our method is based on the Z-test statistical analysis which calculates the probability of the measured period to fall within a user-defined standard deviation limit. The distribution of the measured period should satisfy two conditions: its center (statistical mean) should be equal to the scheduled period of the real-time task, and that it should be symmetrical with most of the samples focused on the center. To ensure that these requirements are met, a data adjustment process, which omits any outliers in the expense of accuracy, is presented. Then, the Z-score of the distribution according to the user-defined deviation limit provides a probability which determines the periodicity of the real-time task. Experiments are conducted to analyze the timing measurements of real-time tasks based on real-time Linux extensions of Xenomai and RT-Preempt. The results indicate that the proposed method is able to provide easier interpretation of the periodicity of real-time tasks which are valuable especially in comparing the performance of various real-time systems.

An Design Of Embedded System for Satisfying Respose Of Wireless Internet Datalink Layer (무선 인터넷 데이터링크 레이어의 응답속도를 만족하는 임베디드 시스템 설계)

  • Oh, Hyun-Seok;Sung, Kwang-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1181-1184
    • /
    • 2005
  • In this paper, we proposed small scale real-time operating system for embedded system. Real-time system is characterized by the severe consequences that result if logical as well as timing correctness properties of system are not met. On real-time system, real-time operating system allows real-time applications to be designed and expanded easily. Functions can be added without requiring major changes to the software. We design small scale real-time operating system for preemptive kernel, and design kernel component such as multitasking, scheduler, task priority, semaphore, inter-task communication, clock tick timer, ISR(Interrupt Service Routine) mechanism has low interrupt latency.

  • PDF

An Efficient Voltage Scheduling for Embedded Real-Time Systems with Task Synchronization (태스크 동기화가 필요한 임베디드 실시간 시스템에 대한 효율적인 전압 스케쥴링)

  • Lee, Jae-Dong;Hur, Jung-Youn
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.6
    • /
    • pp.273-283
    • /
    • 2008
  • Many embedded real-time systems have adopted processors supported with dynamic voltage scaling(DVS) recently. Power is one of the important metrics for optimization in the design and operation of embedded real-time systems. We can save considerable energy by using slowdown of processor supported with DVS. In this paper, we propose heuristic algorithms to calculate task slowdown factors for an efficient energy consumption in embedded real-time systems with task synchronization. The previous algorithm has a following constraint : given the tasks are ordered in a nondecreasing order of their relative deadline, the task slowdown factors computed are in a nonincreasing order. In this paper, we relax the constraint and propose heuristic algorithms which have the same time complexity that previous algorithm has and can save more energy. Experimental results show that the proposed algorithms are energy efficient.

Scalable scheduling techniques for distributed real-time multimedia database systems (분산 실시간 멀티미디어 데이터베이스 시스템을 위한 신축성있는 스케줄링 기법)

  • Kim, Jin-Hwan
    • The KIPS Transactions:PartA
    • /
    • v.9A no.1
    • /
    • pp.9-18
    • /
    • 2002
  • In this paper, we propose scalable scheduling techniques based on EDF to efficiently integrate hard real-time and multimedia soft real-time tasks in the distributed real-time multimedia database system. Hard tasks are guarangteed based on worst case execution times, whereas multimedia soft tasks are served based on mean execution times. This paper describes a served-based scheme for partitioning the CPU bandwidth among different task classes that coexist in the same system. To handle the problem of class overloads characterized by varying number of tasks and varying task arrival rates, thus scheme shows how to adjust the fraction of the CPU bandwidth assigned to each class. This scheme fixes the maximum time that each hard task can execute in the period of the server, whereas it can dynamically change the bandwidth reserved to each multimedia task. The proposed method is capable of minimizing the mean tardiness of multimedia tasks, without jeopardizing the schedulability of the hard tasks. The performance of this scheduling method is compared with that of similar mechanisms through simulation experiments.

Real-time communication in an off-line programming (오프라인 프로그래밍에서의 실시간 통신)

  • Song, Jong-Tak;Son, Kwon;Lee, Min-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.40-43
    • /
    • 1996
  • An off-line programming, OLP, system is widely used in automation fines. To help an on-line robot system to carry out desirable tasks planned by the off-line simulation, an approach to the real-time communication is presented. The OLP system developed consists of a software, a host computer(PC), a SCARA robot body, four servo drivers, and four independent joint controllers. This study focuses on the software where real-time communication is included. The software, can be used in teaching, trajectory planning, real-time running, and performance evaluation. The evaluation of different control algorithms is one of the merits of the software. The software can give servo commands for task running. A comparison of generated and corresponding actual trajectories provides the evaluation of task performance. The safety, of the OLP system is ensured by alarming malfuntions of the system. The OLP system developed can reduce the teaching time and increase the user's convenience.

  • PDF