• Title/Summary/Keyword: Real-time Task

Search Result 755, Processing Time 0.027 seconds

A Study On The fault-Tolerant Task Scheduling Strategy of Real-Time System (실-시간 시스템의 결함 허용 태스크 스케줄링 전략에 관한 연구)

  • 한상섭;이정석;박영수;이재훈;이기서
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.324-329
    • /
    • 2000
  • Object of a real-time system, that performs exact information based on the real-time constraint. is required for an improvement of high reliability. The fault-tolerant task scheduling strategy of multiprocessor as using a distributed memory based on a hardware redundancy can be improved into a high reliability of the real-time system. Therefore, this paper is shown to analyze the reliability of the system by using the transfer parameter and make the modeling in reference to a minimization of the fault-tolerant task scheduling strategy which uses a percentage of task missing and deadline parameter based on optimization task size.

  • PDF

Determination of Optimal Checkpoint Interval for Real-time Control Tasks Considering Performance Index Function (성능 함수를 고려한 실시간 제어 테스크에서의 최적 체크 포인터 구간 선정)

  • Kwak, Seong-Woo;Jung, Young-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.875-880
    • /
    • 2008
  • In this paper, a novel method to determine the optimal checkpoint interval for real-time control task is proposed considering its performance degradation according to tasks's execution time. The control task in this paper has a specific sampling period shorter than its deadline. Control performance is degraded as the control task execution time is prolonged across the sampling period and eventually zero when reached to the deadline. A new performance index is defined to represent the performance variation due to the extension of task execution time accompanying rollback fault recovery. The procedure to find the optimal checkpoint interval is addressed and several simulation examples are presented.

Performance Evaluation of Real-time Mechanisms for Real-time Embedded Linux (실시간 임베디드 리눅스의 실시간 메커니즘 성능 분석)

  • Koh, Jae-Hwan;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.337-342
    • /
    • 2012
  • This paper presents performance evaluation of real-time mechanisms for real-time embedded linux. First, we presents process for implementing open-source real-time embedded linux namely RTAI and Xenomai. These are real-time extensions to linux kernel and we implemented real-time embedded linux over the latest linux kernel. Measurements of executions of real-time mechanisms for each distribution are performed to give a quantitative comparison. Performance evaluations are conducted in kernel space about repeatability of periodic task, response time of Semaphore, FIFO, Mailbox and Message queue in terms of inter-task communication for each distribution. These rules can be helpful for deciding which real-time linux extension should be used with respect to the requirements of the real-time applications.

Real-Time Control System

  • Gharbi, Atef
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.19-27
    • /
    • 2021
  • Tasks scheduling have been gaining attention in both industry and research. The scheduling that ensures independent task execution is critical in real-time systems. While task scheduling has gained a lot of attention in recent years, there have been few works that have been implemented into real-time architecture. The efficiency of the classical scheduling strategy in real-time systems, in particular, is still understudied. To reduce total waiting time, we apply three scheduling approaches in this paper: First In/First Out (FIFO), Shortest Execution Time (SET), and Shortest-Longest Execution Time (SLET). Experimental results have demonstrated the efficacy of the SLET in comparison with the others in most cases in a wide range of configurations.

A Task Scheduling Strategy in a Multi-core Processor for Visual Object Tracking Systems (시각물체 추적 시스템을 위한 멀티코어 프로세서 기반 태스크 스케줄링 방법)

  • Lee, Minchae;Jang, Chulhoon;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.127-136
    • /
    • 2016
  • The camera based object detection systems should satisfy the recognition performance as well as real-time constraints. Particularly, in safety-critical systems such as Autonomous Emergency Braking (AEB), the real-time constraints significantly affects the system performance. Recently, multi-core processors and system-on-chip technologies are widely used to accelerate the object detection algorithm by distributing computational loads. However, due to the advanced hardware, the complexity of system architecture is increased even though additional hardwares improve the real-time performance. The increased complexity also cause difficulty in migration of existing algorithms and development of new algorithms. In this paper, to improve real-time performance and design complexity, a task scheduling strategy is proposed for visual object tracking systems. The real-time performance of the vision algorithm is increased by applying pipelining to task scheduling in a multi-core processor. Finally, the proposed task scheduling algorithm is applied to crosswalk detection and tracking system to prove the effectiveness of the proposed strategy.

Energy-Efficient Real-Time Task Scheduling for Battery-Powered Wireless Sensor Nodes (배터리 작동식의 무선 센서 노드를 위한 에너지 효율적인 실시간 태스크 스케줄링)

  • Kim, Dong-Joo;Kim, Tae-Hoon;Tak, Sung-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.10
    • /
    • pp.1423-1435
    • /
    • 2010
  • Building wireless sensor networks requires a constituting sensor node to consider the following limited hardware resources: a small battery lifetime limiting available power supply for the sensor node, a low-power microprocessor with a low-performance computing capability, and scarce memory resources. Despite such limited hardware resources of the sensor node, the sensor node platform needs to activate real-time sensing, guarantee the real-time processing of sensing data, and exchange data between individual sensor nodes concurrently. Therefore, in this paper, we propose an energy-efficient real-time task scheduling technique for battery-powered wireless sensor nodes. The proposed energy-efficient task scheduling technique controls the microprocessor's operating frequency and reduces the power consumption of a task by exploiting the slack time of the task when the actual execution time of the task can be less than its worst case execution time. The outcomes from experiments showed that the proposed scheduling technique yielded efficient performance in terms of guaranteeing the completion of real-time tasks within their deadlines and aiming to provide low power consumption.

Fault-tolerant Scheduling of Real-time Tasks with Energy Efficiency on Lightly Loaded Multicore Processors

  • Lee, Wan Yeon;Choi, Yun-Seok
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.92-100
    • /
    • 2018
  • In this paper, we propose a fault-tolerant scheduling scheme with energy efficiency for real-time periodic tasks on DVFS-enabled multicore processors. The scheme provides the tolerance of a permanent fault with the primary-backup task model. Also the scheme reduces the energy consumption of real-time tasks with the fully overlapped execution between each primary task and its backup task, whereas most of previous methods tried to minimize the overlapped execution between the two tasks. In order to the leakage energy loss of idle cores, the scheme activates a part of available cores with rarely used cores powered off. Evaluation results show that the proposed scheme saves up to 82% energy consumption of the previous method.

Schedulability Test using task utilization in Real-Time system (실시간 시스템에서 태스크 이용율을 이용한 스케줄링 가능성 검사)

  • Lim Kyung-Hyun;Seo Jae-Hyeon;Park Kyung-Woo
    • Journal of Internet Computing and Services
    • /
    • v.6 no.2
    • /
    • pp.25-35
    • /
    • 2005
  • The Rate Monotonic(RM) scheduling algorithm and Earliest Deadline First(EDF) scheduling algorithm are normally used in Real-Time scheduling algorithm. In those scheduling algorithm, we could predict the performance possibility with total utilization value of task group. But. it had problems with prediction of the boundedness in individual task when the utilization value was over in temporary task. In this paper, the suggested scheduling algorithm can predict task when the utilization value was over and it suggested the method of predicting scheduling possibility based on the utilization value of individual task as well. it predicted the boundedness of scheduling possibility test through simulation In Real-Time scheduling algorithm and analyzed the result.

  • PDF

Deterministic Multi-dimensional Task Scheduling Algorithms for Wearable Sensor Devices

  • Won, Jong-Jin;Kang, Cheol-Oh;Kim, Moon-Hyun;Cho, Moon-Haeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3423-3438
    • /
    • 2014
  • In recent years, wearable sensor devices are reshaping the way people live, work, and play. A wearable sensor device is a computer that is subsumed into the personal space of the user, and is always on, and always accessible. Therefore, among the most salient aspects of a wearable sensor device should be a small form factor, long battery lifetime, and real-time characteristics. Thereby, sophisticated applications of a wearable sensor device use real-time operating systems to guarantee real-time deadlines. The deterministic multi-dimensional task scheduling algorithms are implemented on ARC (Actual Remote Control) with relatively limited hardware resources. ARC is a wearable wristwatch-type remote controller; it can also serve as a universal remote control, for various wearable sensor devices. In the proposed algorithms, there is no limit on the maximum number of task priorities, and the memory requirement can be dramatically reduced. Furthermore, regardless of the number of tasks, the complexity of the time and space of the proposed algorithms is O(1). A valuable contribution of this work is to guarantee real-time deadlines for wearable sensor devices.

Performance Evaluation of Real-Time Power-Aware Scheduling Techniques Incorporating Idle Time Distribution Policies (실행 유휴 시간 분배 정책에 따른 실시간 전력 관리 스케줄링 기법의 성능 평가)

  • Tak, Sungwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1704-1712
    • /
    • 2014
  • The unused Worst-Case Execution Time (WCET) allocated to a real-time task occurs when the actual execution time of the task can be far less than the WCET preassigned to the task for a schedulability test. Any unused WCET allocated to the task can be exploited to reduce the power consumption of battery-powered sensor nodes through real-time power-aware scheduling techniques. From the distribution perspective of the unused WCET, the unused WCET distribution policy is classified into three types: Conservative Unused WCET (CU-WCET), Moderate Unused WCET (MU-WCET), and Aggressive Unused WCET (AU-WCET) distribution policies. We evaluated the performance of real-time power-aware scheduling techniques incorporating each of three unused WCET distribution policies in terms of low power consumption.