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Abstract

In this paper, we propose a fault-tolerant scheduling scheme with energy efficiency for real-time periodic 

tasks on DVFS-enabled multicore processors. The scheme provides the tolerance of a permanent fault with 

the primary-backup task model. Also the scheme reduces the energy consumption of real-time tasks with the 

fully overlapped execution between each primary task and its backup task, whereas most of previous 

methods tried to minimize the overlapped execution between the two tasks. In order to the leakage energy 

loss of idle cores, the scheme activates a part of available cores with rarely used cores powered off. 

Evaluation results show that the proposed scheme saves up to 82% energy consumption of the previous 

method.
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1. Introduction

Energy-efficient design of multicore processors is a critical issue, especially for battery-operated mobile 

devices. High energy dissipation of processing components results in temperature increase of computing 

systems. The temperature increase directly impacts the performance and reliability of integrated circuits (ICs) 

[1]. Thus low energy dissipation of processing components is important for the scheduling problem of 

real-time tasks. Whereas traditional approaches employed the power down of unused components for energy 

saving [2], state-of-the-art approaches employ the Dynamic Voltage Frequency Scaling(DVFS) mechanism

because the energy saving effect in the DVFS mechanism is much larger than that in the power down of 

unused processing cores. The DVFS mechanism dynamically changes the voltage and clock frequency 

supplied to processing cores [3,4].

As well as energy efficiency, fault tolerance is another important factor for mission-critical applications 

such as smartphone navigation and mobile surveillance system. Faults are generally classified into two 
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groups: permanent fault and transient fault. A permanent fault is tolerated with modular redundancy

technique that executes an application in duplicate on several processing units [5]. A transient fault is

tolerated with temporal redundancy technique that re-executes a faulty application [6]. Fault-tolerant design 

for permanent faults is directly applicable to that for transient faults, but fault-tolerant design for transient 

faults cannot be directly applicable to that for permanent faults. Hence the tolerance for permanent faults is 

considered in this study.

Recent fault-tolerant scheduling schemes have considered energy efficiency of real-time tasks with the 

DVFS mechanism. In order to tolerate a permanent fault, a backup copy of each task is ready to run on other 

cores in case of its primary task failure, which is referred to as primary-backup(PB) model [5,7]. However, 

most of them have been developed with a premise that backup copy task is activated only when its primary 

task stops due to a failure. The proposed scheme concurrently executes a primary task and its backup task 

with the lowest clock frequency meeting their deadlines in order to reduce energy consumption of real-time 

tasks. Total energy consumption of two cores executing the primary task and the backup task concurrently

with low core speed is possibly smaller than that of two cores executing the two tasks sequentially with high 

core speed, because energy consumption is approximately proportional to the cube of core speed in the 

DVFS mechanism. Also the proposed scheme turns off the power of rarely used processing cores in order to 

reduce the leakage energy consumption.

Whereas the energy-efficient scheduling problems with two constraints among real-time completion, fault 

tolerance and multicore processors have been widely studied, the energy-efficient scheduling problem

considering all the three constraints is rarely studied.  A few studies dealt with the energy-efficient 

scheduling problem of real-time tasks with fault tolerance on multicore processors [5,7,8,9]. However the 

previous studies [5,7,8] do not consider the potential energy saving capability of concurrently executing a 

primary task and its backup task, and the previous study [9] does not consider the potential energy saving 

capability of turning off the power of rarely used cores. In this paper, we handle a scheduling problem of 

real-time periodic tasks on multicore processors that minimizes the total energy consumptions of all 

processing cores while tolerating a single permanent fault and completing the execution of each task within 

its deadline. Unfortunately, the problem of minimizing total energy consumption is NP-hard. Hence the 

proposed scheme searches for a near minimum-energy schedule within a polynomial time on multiple 

processing cores, where the deadline and fault tolerance constraints are satisfied. Evaluation results show 

that the proposed scheme saves up to 82% energy consumption of the previous method.

The rest of this paper is organized as follows; Section 2 explains the considered system model. Section 3 

describes the proposed scheme in detail. Section 4 shows evaluation results. Section 5 provides concluding 

remarks.

2. System Model

Given N processing cores are homogeneous and support the DVFS(Dynamic Voltage Frequency Scaling) 

mechanism that dynamically changes the voltage and clock frequency supplied to the processors [3,4]. The 

nth processing core is denoted as Cn. Computation speed of the processors is typically proportional to the 

clock frequency, and their energy consumption per unit time is approximately proportional to the cube of the 

clock frequency. Then energy consumption per unit time is proportional to the cube of core speed. The 

maximum core speed is denoted as Smax and normalized to Smax = 1.0. Scaled-down speed is denoted as S

such that 0 < S < Smax = 1.0. The energy consumption rate at a core speed S is denoted as E(S) = a×S3  + e0, 

where a is a hardware-dependent constant and e0 is leakage energy consumption. The leakage energy 
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consumption e0 is the energy consumption in the idle status when a core has no computation to execute, 

which is strictly positive [3]. That is E(0) = e0  > 0. Therefore turning off the power of unused cores need 

reduces the energy consumption. An identical core speed is supplied to all activated cores. We do not 

consider the system model that supplies different core speeds simultaneously to activated cores.

Given M periodic tasks are preemptive and have no interdependency. In the PB(primary-backup) model

[5,7], each primary periodic task and its backup copy task should complete their computation within their 

arrival period, which becomes their deadline. The mth primary periodic task is denoted as Tm and its backup 

task is denoted as Bm. Dm and Wm respectively denote the deadline of Tm and the worst processing time of Tm

at the maximum core speed Smax. Bm has the same parameters with Tm. When Tm and Bm are executed with a 

speed S such that S < Smax, their execution time is Wm/S such that Wm/S > Wm/Smax. The proposed scheme is 

designed for a single permanent hardware fault, which includes a transient fault and results in failure of at 

most one core. In order to tolerate the failure of Tm, both Tm and Bm should be completed within Dm.

The ratio of the execution time of Tm at the maximum speed Smax to the deadline Dm is referred to as task 

utilization and denoted as Um = Wm/(Dm ∙ Smax). Because Smax = 1, Wm = Dm ∙ Um. The backup task Bm has 

the same Um with its primary task Tm. Total utilization of all tasks assigned to a core Cn is referred to as core

load and denoted as Ln = ∑U. The lowest constant speed that can execute all the tasks assigned to core Cn is 

referred to as optimal speed and denoted as Sn
opt. In other words, the optimal speed is the minimum core 

speed satisfying the deadlines of all the assigned tasks. 

Even though the static version of the proposed scheme tolerates a single permanent fault, its dynamic 

version can tolerate multiple permanent faults through the dynamic reconfiguration mechanism that reassigns 

all tasks to non-faulty cores after excluding the faulty core at run-time.

The considered problem is to minimize total energy consumption of N processors while executing M

periodic real-time tasks within their respective deadlines. The M independent tasks can be executed on a 

subset of N processors with unused processing cores powered off. A schedule is called feasible if the M tasks 

are completely executed within their respective deadlines. 

3. Proposed Scheduling 

It is verified that the minimum energy consumption when maximizing the overlapped execution period 

between the primary task and its backup task is smaller than that when minimizing the overlapped execution 

period between the two tasks under the condition U >  (1 – 1/Ö2) » 0.29 [9]. 

Figure 1. Scheduling comparison of two approaches

Figure 1(a) shows the case where the overlapped execution period between the primary task and its 

backup task is maximized. In this figure, the primary task and its backup task are concurrently executed with 
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the optimal speed on separate two cores. Figure 1(b) shows the case where the overlapped execution period 

between the primary task and its backup task is minimized. In this figure, the primary task and its backup 

tasks are sequentially executed on separate two cores. To minimize the energy consumption in the fault-free 

status, the backup task is not actually executed if the primary task is successfully completed. The execution 

time of the backup task is reserved with the maximum core speed in order to minimize its dominantly wasted 

execution time due to very low probability of a permanent fault. Then the primary task is executed with the 

lowest speed completing the primary task within the time period remaining after excluding the reserved time 

of its backup task from their deadline. The energy consumption of the backup task is discarded due to the 

very low probability of a permanent fault in this comparison.

In Figure 1(a), the optimal speed is equal to the task utilization according to the definition of task 

utilization in Section 2, i.e., Sopt = U. Then the energy consumption of two cores when executing the primary 

task and its backup task concurrently with the optimal speed for the time D is 

2	 ∙ {α	 ∙ (����)� 	 ∙ ��} ∙ � = 2	 ∙ � ∙ (�)� ∙ � + 2 ∙ �� ∙ �               (1)

In Figure 1(b), the execution time of the backup task with the maximum speed is W = D × U according to 

the definition of task utilization U in Section 2. The primary task is executed within the decreased period (D

– W) = (D – D × U) remaining after reserving the execution of the backup task. The lowest speed executing 

the primary task for the time (D – D × U) is S = W / (D – D × U)  = D × U / (D – D × U) = U / (1 – U)  

because W / S = (D – D × U) and W = D × U ∙ Smax = D × U  according to the definitions of the scale-down 

speed S and the worst processing time W in Section 2. Then the energy consumption of the core executing 

the primary task for the time D is {a∙(S)3 + e0}∙(D – D × U) + e0∙(D × U) = a∙(S)3×(D – D × U) + e0∙D. The 

energy consumption of the core reserved for the back task for the time D is e0∙D. Hence total energy 

consumption of the two cores for the time D is 

α	 ∙ (����)� ∙ (� − � ∙ �) 		+ 	2 ∙ �� ∙ � =

α	 ∙ (�/(1 − �))� ∙ (� − � ∙ �)		+ 	2 ∙ �� ∙ � =

α	 ∙ ��/(1 − �)� ∙ �		 + 	2 ∙ �� ∙ �                       (2)

From the equation (1) and (2), the energy consumption in Figure 1(a) is smaller than that in Figure 1(b) 

when U > (1 – 1/21/2) » 0.29, because 2 ∙ a ∙ (U)3 ∙ D < a ∙ U3 / (1 – U)2 ∙ D when U > (1 – 1/21/2).

Figure 2. Scheduling of multiple tasks running on a core

When multiple tasks are executed on a single core, it is known that the minimum-energy schedule 

determines their execution order according to the earliest-deadline first(EDF) rule and its optimal speed is 
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equal to total task utilization of all assigned tasks, i.e., S = SU [4]. Total task utilization of all tasks assigned 

to a core Cn is called core load and denoted as Ln = SU. Then the energy consumption of is E( S ) = E( L )  

because S = L = SU. Figure 2 shows the case when multiple tasks are running on a core. Primary task and its 

backup tasks are assigned to different cores. For the sake of simplicity, primary tasks or backup tasks are 

allocated exclusively to at most N/2 cores. Because of E( S ) = E( L ), the minimum energy consumption 

when maximizing the overlapped execution period between primary and backup tasks, shown in Figure 2(a), 

is smaller than that when minimizing the overlapped execution period, shown in Figure 2(b), if L > (1 –

1/21/2). 

To find the minimum-energy feasible schedule, we first determine the number of activated cores among 

available N processors. In other works, the number of powered off cores is determined. Our goal is to 

minimize total mean energy consumption of all activated cores executing given real-time tasks. If the 

number of activated cores is fixed and given as h, then distributing the total task utilization of all primary 

and backup tasks evenly to h cores minimizes total power consumption of all activated cores because E( L )

is a convexly increasing function of L [4].

The number h of activated cores is determined as follows; Define a linear function b ∙ L with an input of L

where b is a positive constant. If b is selected to be b ∙ L = E( L ) only at a unique point L = d  as shown in 

Figure 3, then h =2∙(∑ ��
�
��� ) /d because d =2∙(∑ ��

�
��� ) /h. When the total utilization of all primary and 

backup tasks, 2∙(∑ ��
�
��� ), is evenly distributed to h cores, the minimum energy consumption of h cores is 

h ∙ En( d ) because d  = 2∙(∑ ��
�
��� ) /h. If (h + l) cores are activated for positive l, then the minimum 

energy consumption of (h + l) cores is (h + l) ∙ E(d - w) where (d - w) =  (∑ ��
�
��� ) /(h + l). As shown in 

Figure 3, (h + l) ∙ E(d - w) > b ∙ (h + l) ∙ (d - w) = b ∙ h ∙ d = h ∙ E( d ). That is, the minimum energy

consumption of (h + l) activated cores is larger than that of h  activated cores. By a similar reason, the 

minimum energy consumption of (h - l)  activated cores is larger than that of h  activated cores. Hence, 

distributing total utilization of all primary and backup tasks to h  cores as evenly as possible minimizes 

total energy consumption of all activated cores. If h  is not an integer, then one of two neighboring integers 

is selected to have less total energy consumption of activated cores.

Figure 3. Determination of the number of activated cores

The remaining issue is to determine the core to which each task is assigned. From the load value of each 

core, we can derive the optimal speed and the minimal long-term energy consumption of each core. The 

problem of minimizing total energy consumption of all cores can be formulated as follows:
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Minimize			� ��(	��	)
�

���
	,			subject	to	�� 	 ≤ 1				for	each			�

where unused cores with no assigned tasks are powered off (i.e.,  E( 0 )  = 0  if Ln = 0, instead of  E( 0 ) 

= e0 ).

Although the above problem has a lower complexity than the original task scheduling problem, it is still 

NP-hard for a general task set because the problem of distributing total task utilization of given multiple 

tasks evenly to given multiple cores is NP-hard [4]. Because this computational overhead is too heavy to run 

even offline for a large number of available cores and tasks, we propose a scheduling scheme that finds a 

near minimum-energy feasible schedule within a polynomial time. The following pseudo-code describes the 

proposed scheduling scheme.

The computational complexity of the proposed algorithm is O( M ∙ log M ∙ N ). The complexity of Step 1 

is O( M ∙ N ). The complexity to find the value of b and d is O( M ). The complexity to calculate the 

number h is O( M ). The complexity of Step 2 is O( 1 ).  The complexity of Step 3.1 and Step 3.3 is O( M

∙ log M ). The time complexity of Step 3.2 and Step 3.4 is O( M ∙ N ). The complexity of Step 4.1 is O( M ∙

log M ∙ N ) and that of Step 4.2 is O( 1 ).

4. Evaluation

The proposed scheme is compared with the previous method [9] that assigns given tasks to all available 

cores. The previous method [9] did not consider turning off the power of rarely used cores, whereas the 

proposed scheme turns off the power of rarely used cores after migrating their assigned tasks to other 

activated cores. As a performance metric, we define the ratio of total energy consumption in the proposed 

scheme to that in the previous method as Normalized Energy Consumption (NEC). For performance 

Step 1. Calculate task utilization values Um for each task Tm and determine the number h of 

activated cores such that h = 2 ∙ (∑ ��
�
��� ) / d .

Step 2. If the evenly distributed core load L (= d) of h activated cores is no larger than (d  < 1 –

1/21/2), then use the previous method [5]. Otherwise, go to Step 3.

Step 3. Assign given primary M tasks to h/2 cores and backup M tasks to the remaining h/2 cores.

3.1: Sort all primary tasks in the decreasing order of their task utilization.

3.2: Assign each primary task one by one to the core with the lowest core load among h/2 cores.

3.3: Sort all backup tasks in the decreasing order of their task utilization.

3.4: Assign each backup task one by one to the core with the lowest core load among h/2 cores.

Step 4. Determine the schedule of each activated core.

4.1: Sort the execution order of the tasks assigned to each core based on the 

earliest-deadline-first(EDF) rule.

4.2: Apply the optimal speed S opt = L = d  (= 2∙(∑ ��
�
��� )/ h) to all activated cores. 
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evaluation, we employ simulation experiments with MATLAB tool on Windows 7 operating system.

In the evaluation, we synthetically generates periodic tasks and set a = 1.55´10-6 and e0 = 60mW obtained 

by applying curve fitting of (a×S3 + e0) to the clock frequencies of an Intel XScale processor and their energy 

consumption value [3]. Then d = 0.268. 16 processing cores are given (N=16). A primary task set consists of 

16, 24 or 32 periodic tasks. The deadline of each primary task is randomly selected between 10 milliseconds 

and 1 second. The utilization of each primary task is synthetically generated between 0.01 and 1.0 from a 

normal distribution. We run 10,000 task sets and display their average values. 

Figure 5. NEC values against average Task Load

In the first set of comparisons, we examine the performance of the relative task utilization to their deadline. 

To measure the relative task utilization to the deadline, we define the average value of all tasks’ utilization as 

Average Task Utilization, i.e., 100 ´ SU /M. Figure 5 shows NEC values against Average Task Utilization. 

As the value of Average Task Utilization decreases, the energy saving effect of the proposed scheme 

increases. Also, as the number of given tasks increases, the energy saving effect increases. When the number 

of given tasks is 32 and the Average Task Utilization is 10%, the proposed scheme saves about 82% energy 

consumption of the previous method.

In the second set of comparisons, we examine the number of activated cores among all available cores in 

the proposed scheme. Figure 6 shows the number of activated cores for all primary and backup tasks. As the 

value of Average Task Utilization decreases or the number of tasks increases, the proposed scheme activates 

fewer cores while the previous method activates all available cores. When Average Task Utilization is 10% 

and the number of tasks is 32, the proposed scheme reduces the number of activated cores by about 87%, 

compared with the previous method. From Figure 5 and Figure 6, it is verified that the proposed scheme 

saves more energy as the proposed scheme activates fewer cores among given available cores, compared to 

the previous method.
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Figure 6. Number of Activated Processors

5. Conclusions

In this paper, we handle the problem of minimizing the energy consumption of real-time periodic tasks 

while meeting their deadlines and tolerating a permanent fault on lightly loaded DVFS-enabled multicore 

processors. The proposed scheme reduces the energy consumption of real-time tasks by utilizing the 

primary-backup model that fully overlaps the execution of each primary task and its backup task, whereas 

most of previous primary-backup methods tried to minimize the overlapped execution between a primary 

and its backup tasks. Also the scheme activates a part of available processing cores with rarely used cores 

powered off, in order to save the leakage energy consumption of idle cores. The proposed scheme is 

designed to find a near minimum-energy feasible schedule within a polynomial time, because the problem of 

minimizing the energy consumption of real-time tasks while meeting their deadline is NP-hard. Evaluation 

shows that the proposed scheme saves up to 82% energy consumption of the previous method.
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