• 제목/요약/키워드: Real-time Simulation

Search Result 3,616, Processing Time 0.04 seconds

A Real Time Model of Dynamic Thermal Response for 120kW IGBT Inverter (120kW급 IGBT 인버터의 열 응답 특성 실시간 모델)

  • Im, Seokyeon;Cha, Gangil;Yu, Sangseok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.184-191
    • /
    • 2015
  • As the power electronics system increases the frequency, the power loss and thermal management are paid more attention. This research presents a real time model of dissipation power with junction temperature response for 120kw IGBT inverter which is applied to the thermal management of high power IGBT inverter. Since the computational time is critical for real time simulation, look-up tables of IGBT module characteristic curve are implemented. The power loss from IGBT provides a clue to calculate the temperature of each module of IGBT. In this study, temperature of each layer in IGBT is predicted by lumped capacitance analysis of layers with convective heat transfer. The power loss and temperature of layers in IGBT is then communicated due to mutual dependence. In the dynamic model, PWM pulses are employed to calculation real time IGBT and diode power loss. Under Matlab/Simulink$^{(R)}$ environment, the dynamic model is validated with experiment. Results showed that the dynamic response of power loss is closely coupled with effective thermal management. The convective heat transfer is enough to achieve proper thermal management under guideline temperature.

Design and Realization of Distributed Real-time Message Management Scheme for Naval Combat System Development Tool (함정 전투 시스템 개발 툴을 위한 분산 실시간 메시지 관리 기법 설계 및 구현)

  • Im, Jin Yong;Kim, Dong Seong;Song, Kyung Sub;Choi, Yoon Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.570-577
    • /
    • 2016
  • This paper proposes the design of a novel distributed message management scheme using a message-oriented management and analysis tool (MOMAT) for naval combat system (NCS) middle-ware. If a message is not guaranteed real-time of the NCS with each node, it causes the loss of data and decreases the reliability of systems. To solve these problems, improved message management schemes are proposed. Message management schemes are considering a real-time user management scheme and a real-time traffic management scheme. The proposed schemes are simulated with a developed simulation tool, data publisher, and subscriber connected through nodes in middle-ware. The simulation results show improved results in terms of message round-trip time (RTT), End-to-End delay, and throughput.

Propagation Neural Networks for Real-time Recognition of Error Data (에라 정보의 실시간 인식을 위한 전파신경망)

  • Kim, Jong-Man;Hwang, Jong-Sun;Kim, Young-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.46-51
    • /
    • 2001
  • For Fast Real-time Recognition of Nonlinear Error Data, a new Neural Network algorithm which recognized the map in real time is proposed. The proposed neural network technique is the real time computation method through the inter-node diffusion, In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. The most reliable algorithm derived for real time recognition of map, is a dynamic programming based algorithm based on sequence matching techniques that would process the data as it arrives and could therefore provide continuously updated neighbor information estimates. Through several simulation experiments, real time reconstruction of the nonlinear map information is processed,

  • PDF

Propagation Neural Networks for Real-time Recognition of Error Data (에라 정보의 실시간 인식을 위한 전파신경망)

  • 김종만;황종선;김영민
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.46-51
    • /
    • 2001
  • For Fast Real-time Recognition of Nonlinear Error Data, a new Neural Network algorithm which recognized the map in real time is proposed. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. The most reliable algorithm derived for real time recognition of map, is a dynamic programming based algorithm based on sequence matching techniques that would process the data as it arrives and could therefore provide continuously updated neighbor information estimates. Through several simulation experiments, real time reconstruction of the nonlinear map information is processed.

  • PDF

A Real-time Multibody Vehicle Dynamics and Control Model for a Virtual Reality Intelligent Vehicle Simulator (가상현실 지능형 차량 시뮬레이터를 위한 실시간 다물체 차량 동역학 및 제어모델)

  • 김성수;손병석;송금정;정상윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.173-179
    • /
    • 2003
  • In this paper, a real-time multibody vehicle dynamics and control model has been developed for a virtual reality intelligent vehicle simulator. The simulator consists of low PCs for a virtual reality visualization system, vehicle dynamics and control analysis system a control loading system, and a network monitoring system. Virtual environment is created by 3D Studio Max graphic tool and OpenGVS real-time rendering library. A real-time vehicle dynamics and control model consists of a control module based on the sliding mode control for adaptive cruise control and a real-time multibody vehicle dynamics module based on the subsystem synthesis method. To verify the real-time capability of the model, cut-in, cut-out simulations have been carried out.

High-speed simulation for fossil power plants uisng a parallel DSP system (병렬 DSP 시스템을 이용한 화력발전소 고속 시뮬레이션)

  • 박희준;김병국
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.4
    • /
    • pp.38-49
    • /
    • 1998
  • A fossil power plant can be modeled by a lot of algebraic equations and differential equations. When we simulate a large, complicated fossil power plant by a computer such as workstation or PC, it takes much time until overall equations are completely calculated. Therefore, new processing systems which have high computing speed is ultimately needed for real-time or high-speed(faster than real-time) simulators. This paper presents an enhanced strategy in which high computing power can be provided by parallel processing of DSP processors with communication links. DSP system is designed for general purpose. Parallel DSP system can be easily expanded by just connecting new DSP modules to the system. General urpose DSP modules and a VME interface module was developed. New model and techniques for the task allocation are also presented which take into account the special characteristics of parallel I/O and computation. As a realistic cost function of task allocation, we suggested 'simulation period' which represents the period of simulation output intervals. Based on the development of parallel DSP system and realistic task allocation techniques, we cound achieve good efficiency of parallel processing and faster simulation speed than real-time.

  • PDF

Development and Analysis of Real-time Distributed Air Defense System Simulator Using a Software Framework (소프트웨어 프레임워크를 이용한 대공유도무기 실시간 분산 시뮬레이터 개발 및 분석)

  • Cho, Byung-Gyu;Youn, Cheong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.58-67
    • /
    • 2005
  • To overcome limitations of test scope, schedule and cost, M&S(Modeling & Simulation) technique has been applied for T&E(Test and Evaluation) of the state-of-art weapon systems. This paper proposes an air defense simulation software framework to reduce both redundancy an[1 programming errors in system simulator. The proposed framework consists of a 'model' and a 'middleware' The 'middleware' is a reliable communication service layer that supports not only HLA(High Level Architecture) which is an international standard in M&S but also TCP/IP, UDP and etc. The main role of 'model' is to schedule and to run the real-time distributed simulation. The proposed framework has been applied to M-SAM(Middle range Surface to Air Missile) system simulator. The proposed framework's scheduling and communication performance results are satisfactory and were measured by hardwired NTP(Network Timer Protocol) time-stamp with GPS(Global Positioning System) timer for better precision.

Study on the 3D Virtual Ground Modeling and Application for Real-time Vehicle Driving Simulation on Off-road (실시간 야지주행 시뮬레이션을 위한 3차원 가상노면의 구성 및 적용에 대한 연구)

  • Lee, Jeong-Han;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.92-98
    • /
    • 2010
  • Virtual ground modeling is one of key topic for real-time vehicle dynamic simulation. This paper discusses about the virtual 3D road modeling process using parametric surface concept. General road data is a type of lumped position vector so interpolation process is required to compute contact of internal surface. The parametric surface has continuity and linearity within boundaries and functions are very simple to find out contact point. In this paper, the parametric surface formula is adopted to road modeling to calculate road hight. Position indexing method is proposed to reduce memory size and resource possession, and a simple mathematical method for contact patch searching is also proposed. The developed road process program is tested in dynamic driving simulation on off-road. Conclusively, the new virtual road program shows high performance of road hight computation in vast field of off-road simulation.

Real-Time HIL Simulation of the Discontinuous Conduction Mode in Voltage Source PWM Power Converters

  • Futo, Andras;Kokenyesi, Tamas;Varjasi, Istvan;Suto, Zoltan;Vajk, Istvan;Balogh, Attila;Balazs, Gergely Gyorgy
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1535-1544
    • /
    • 2017
  • Advances in FPGA technology have enabled fast real-time simulation of power converters, filters and loads. FPGA based HIL (Hardware-In-the-Loop) simulators have revolutionized control hardware and software development for power electronics. Common time step sizes in the order of 100ns are sufficient for simulating switching frequency current and voltage ripples. In order to keep the time step as small as possible, ideal switching function models are often used to simulate the phase legs. This often produces inferior results when simulating the discontinuous conduction mode (DCM) and disabled operational states. Therefore, the corresponding measurement and protection units cannot be tested properly. This paper describes a new solution for this problem utilizing a discrete-time PI controller. The PI controller simulates the proper DC and low frequency AC components of the phase leg voltage during disabled operation. It also retains the advantage of fast real-time execution of switch-based models when an accurate simulation of high frequency junction capacitor oscillations is not necessary.

Performance Measurement and Analysis of RTI in the HLA-based Real-time Distributed M-SAM Simulation (HLA 기반 실시간 분산 M-SAM 시뮬레이션에서 RTI성능 측정 및 분석)

  • Choi Sang-Yeong;Cho Byung-Kyu;Lee Kil-Sup
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.2
    • /
    • pp.149-156
    • /
    • 2005
  • The HLA is the simulation architecture standard that the civilian and military simulation communities are deeply interested in. We can find various successful practices applying HLA to constructive simulations such as war games in domestics and overseas. However, any case of real-time distributed simulations has not been reported. The reason is that a message transmission period via RTI in a network layer varies according to computing power, simulation nodes, transmission types, and packet size; further a message processing time in an application layer depends on its processing methods, thus too difficult to set up real-time constraints for the enhancement of a real-time resolution. Hence, in this paper we have studied the real-time constraints of RTI for the development of the M-SAM simulator. Thus we have developed a HLA based pilot simulator using 6 PC's in LAN and then measured and analysed the performance of the RTI. As the results of our work, we could obtain the quantitative values for message delay, RTI overhead and RTI packet transmission ratio by a real operation scenario and loads, which are not shown in the previous works. We also expect that the results can be used as a guideline to set up the number of targets, transmission frequency and message processing method in the development of the M-SAM simulator and similar applications.