• Title/Summary/Keyword: Real-time Ocean Environment

Search Result 149, Processing Time 0.022 seconds

Background Level and Time Series Variation of Atmospheric Radon Concentrations at Gosan Site in Jeju Island (제주도 고산지역의 대기 라돈 배경농도 및 시계열 변동)

  • Song, Jung-Min;Bu, Jun-Oh;Kim, Won-Hyung;Kang, Chang-Hee;Ko, Hee-Jung;Chambers, S.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.2
    • /
    • pp.174-183
    • /
    • 2017
  • The background level and timely variation characteristics of atmospheric $^{222}Rn$ concentrations have been evaluated by the real time monitoring at Gosan site of Jeju Island, Korea, during 2008~2015. The average concentration of atmospheric radon was $2,480mBq\;m^{-3}$ for the study period. The cyclic seasonality of radon was characterized such as winter maximum and summer minimum, consistent with the reduction in terrestrial fetch going to summer. On monthly variations of radon, the mean concentration in October was the highest as $3,041mBq\;m^{-3}$, almost twice as that in July ($1,481mBq\;m^{-3}$). The diurnal radon concentrations increased throughout the nighttime approaching to the maximum ($2,819mBq\;m^{-3}$) at around 7 a.m., and then gradually decreased throughout the daytime by the minimum ($2,069mBq\;m^{-3}$) at around 3 p.m. The diurnal radon cycle in winter showed comparatively small amplitude due to little variability in atmospheric mixing depth, conversely, large amplitude was observed in summer due to relatively a big change in atmospheric mixing depth. The cluster back-trajectories of air masses showed that the high radon events occurred by the predominant continental fetch over through Asia continent, and the radon concentrations from China continent were about 1.9 times higher on the whole than those from the North Pacific Ocean. The concentrations of $PM_{10}$ also increased in proportion to the high radon concentrations, showing a good linear correlation between $PM_{10}$ and radon concentrations.

A Study on the Optimum Navigation Route Safety Assessment System using Real Time Weather Forecasting (실시간 기상 정보를 이용한 최적 항로 안전 평가 시스템의 연구)

  • Choi, Kyong-Soon;Park, Myung-Kyu;Lee, Jin-Ho;Park, Gun-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.133-140
    • /
    • 2007
  • Since early times, captain have been sailing to select the optimum route considering the weather, ship loading status condition and operational scheduling empirically. However, it is rare to find digitalized onboard route support system whereas weather facsimile or wave and swell chart are utilized for the officer, based on captain's experience. In this paper, optimal route safety assessment system which is composed of voyage efficiency and safety component is introduced. Optimum route minimizea ETA(estimated time of arrival) and fuel consumption that shipping company and captain are requiring to evaluate for efficient voyage considering speed loss and power increase based on wave added resistance of ship. In the view point of safety, seakeeping prediction is performed based on 3 dimensional panel method. Finally, It is assistance measure for ship's optimum navigation route safety planning & assessment.

  • PDF

Analysis of Surface Sound Channel by Low Salinity Water and Its Mid-frequency Acoustic Characteristics in the East China Sea and the Gulf of Guinea (동중국해와 기니만에서 저염분수로 인한 표층음파채널과 중주파수 음향 특성 분석)

  • Kim, Hansoo;Kim, Juho;Paeng, Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Salinity affects sound speed in the low salinity environment, in the seas where freshwater from large rivers and flows into the marginal sea area near the Yangtze River and the Niger River. In this paper, SSC (Surface Sound Channel) formed by low salinity water was investigated in the East China Sea and the Gulf of Guinea of rainy season. The data from KODC (Korea Oceanographic Data Center) in the East China Sea and from ARGO (Array for Real-time Geostrophic Oceanography) in the Gulf of Guinea of the tropical area were used for analysis. SSC haline channel was formed 14 times among 32 SSC occurrences when the 90 data from 9 points were analyzed during a decade (2000 ~ 2009) in the East China Sea. In the Gulf of Guinea, haline channel was formed 18 times among 20 SSC occurrences during 3 years (2006 ~ 2009). When the sound speed gradient was analyzed from temperature-salinity gradient diagram, the gradients of both salinity and temperature affect SSC formation in the East China Sea. In contrast, the salinity gradient mostly affects SSC formation due to the least change of temperature in the well-developed mixed layer in the Gulf of Guinea. Their acoustic characteristics show that channel depth is 6.5 m, critical angle is $1.5^{\circ}$ and difference of transmission loss between surface and thermocline is 11.5 dB in the East China Sea, while channel depth is 18 ~ 24 m, critical angle is $4.0{\sim}5.4^{\circ}$ and difference of transmission loss is 21.5 ~ 27.9 dB in the Gulf of Guinea. These results are expected to be used as a basic understanding of the acoustic transmission changes due to low salinity water at the estuaries and the ocean with heavy precipitation.

A Study on Sea Surface Temperature Changes in South Sea (Tongyeong coast), South Korea, Following the Passage of Typhoon KHANUN in 2023 (2023년 태풍 카눈 통과에 따른 한국 남해 통영해역 수온 변동 연구)

  • Jae-Dong Hwang;Ji-Suk Ahn;Ju-Yeon Kim;Hui-Tae Joo;Byung-Hwa Min;Ki-Ho Nam;Si-Woo Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.13-19
    • /
    • 2024
  • An analysis of the coastal water temperature in the Tongyeong waters, the eastern sea of the South Sea of Korea, revealed that the water temperature rose sharply before the typhoon made landfall. The water temperature rise occurred throughout the entire water column. An analysis of the sea surface temperature data observed by NOAA(National Oceanic and Atmospheric Administration) satellites, indicated that sea water with a temperature of 30℃ existed in the eastern waters of the eastern South Sea of Korea before the typhoon landed. The southeastern sea of Korea is an area where ocean currents prevail from west to east owing to the Tsushima Warm Current. However, an analysis of the satellite data showed that seawater at 30℃ moved from east to west, indicating that it was affected by the Ekman transport caused by the typhoon before landing. In addition, because the eastern waters of the South Sea are not as deep as those of the East Sea, the water temperature of the entire water layer may remain constant owing to vertical mixing caused by the wind. Because the rise in water temperature in each water layer occurred on the same day, the rise in the bottom water temperature can be considered as owing to vertical mixing. Indeed, the southeastern sea of Korea is a sea area where the water temperature can rise rapidly depending on the direction of approach of the typhoon and the location of high temperature formation.

Consideration of Time Lag of Sea Surface Temperature due to Extreme Cold Wave - West Sea, South Sea - (한파에 따른 표층수온의 지연시간 고찰 - 서해, 남해 -)

  • Kim, Ju-Yeon;Park, Myung-Hee;Lee, Joon-Soo;Ahn, Ji-Suk;Han, In-Seong;Kwon, Mi-Ok;Song, Ji-Yeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.701-707
    • /
    • 2021
  • In this study, we examined the sea surface temperature (SST), air temperature (AT), and their time lag in response to an extreme cold wave in 2018 and a weak cold wave in 2019, cross-correlating these to the northern wind direction frequency. The data used in this study include SST observations of seven ocean buoys Real-time Information System for Aquaculture Environment provided by the National Institute of Fisheries Science and automatic weather station AT near them recorded every hour; null data was interpolated. A finite impulse response filter was used to identify the appropriate data period. In the extreme cold wave in 2018, the seven locations indicated low SST caused by moving cold air through the northern wind direction. A warm cold wave in 2019, the locations showed that the AT data was similar to the normal AT data, but the SST data did not change notably. During the extreme cold wave of 2018, data showed a high correlation coefficient of about 0.7 and a time lag of about 14 hours between AT and SST; during the weak cold wave of 2019, the correlation coefficient was 0.44-0.67 and time lag about 20 hours between AT and SST. This research will contribute to rapid response to such climate phenomena while minimizing aquaculture damage.

Discovery of and Recovery from Failure in a Costal Marine USN Service

  • Ceong, Hee-Taek;Kim, Hae-Jin;Park, Jeong-Seon
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.11-20
    • /
    • 2012
  • In a marine ubiquitous sensor network (USN) system using expensive sensors in the harsh ocean environment, it is very important to discover failures and devise recovery techniques to deal with such failures. Therefore, in order to perform failure modeling, this study analyzes the USN-based real-time water quality monitoring service of the Gaduri Aqua Farms at Songdo Island of Yeosu, South Korea and devises methods of discovery and recovery of failure by classifying the types of failure into system element failure, communication failure, and data failure. In particular, to solve problems from the perspective of data, this study defines data integrity and data consistency for use in identifying data failure. This study, by identifying the exact type of failure through analysis of the cause of failure, proposes criteria for performing relevant recovery. In addition, the experiments have been made to suggest the duration as to how long the data should be stored in the gateway when such a data failure occurs.

A Study on the Underwater Navigation System with Adaptive Receding Horizon Kalman Filter (적응 이동 구간 칼만 필터를 이용한 무인 잠수정의 항법 시스템에 관한 연구)

  • Jo, Gyung-Nam;Seo, Dong-C.;Choi, Hang-S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.269-279
    • /
    • 2008
  • In this paper, an underwater navigation system with adaptive receding horizon Kalman filter (ARHKF) is studied. It is well known that incorrect statistical information and temporal disturbance invoke errors of any navigation systems with Kalman filter, which makes the autonomous navigation difficult in real underwater environment. In this context, two kinds of problems are herein considered. The first one is the development of an algorithm, which estimates the noise covariance of a linear discrete time-varying stochastic system. The second one is the implementation of ARHKF to underwater navigation systems. The performance of the derived estimation algorithm of noise covariance and the ARHKF are verified by simulation and experiment in the towing tank of Seoul National University.

A Reliability Analysis of a Guyed Tower (Guyed Tower의 신뢰성 해석)

  • Tae-B.,Ha;Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.2
    • /
    • pp.29-35
    • /
    • 1987
  • As offshore activities move into deeper ocean, conventional fixed-base platforms drastically increase in size and cost, One of alternatives available is a guyed tower, in which environmental loads are supported by guylines instead of structural members. The guying system of the guyed tower is designed on one hand to be stiff enough to limit the structural displacement in normal operations, but on the other hand to be soft enough to permit large slow sways during the presence of design-level storms. This compliancy provides an efficient means of withstanding harsh environment so that the disproportionate increase in size of deep water platforms can be kept to a rational limit. Novel configurations contain always some degrees of potential risks mainly due to the lack of experience. The most critical hazard inherent to a guyed tower may be the pullout of anchor piles. Once it happens, the guyline fails to function and it may eventually lead to the total collapse of the system. It is the aim of this paper to discuss and quantify the anchor-pullout risk of a guyed tower. A stochastic analysis is made for evaluating the first-upcrossing probability of the tension acting on anchor piles over the uplift capacity. Nonlinearities involved in the mooring stiffness and hydrodynamics are taken into account by using time-domain analysis. A simplified two dimensional dynamic model is developed to exemplify the underlying concept. Real hurricane data in the Gulf of Mexico spanning over 70 years are incorporated in a numerical example of which result clearly indicates highly potential risk of anchor pullout.

  • PDF

SENSOR DATA MINING TECHNIQUES AND MIDDLEWARE STRUCTURE FOR USN ENVIRONMENT

  • Jin, Cheng-Hao;Lee, Yong-Mi;Kim, Hi-Seok;Pok, Gou-Chol;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.353-356
    • /
    • 2007
  • With advances in sensor technology, current researches on the pertinent techniques are actively directed toward the way which enables the USN computing service. For many applications using sensor networks, the incoming data are by nature characterized as high-speed, continuous, real-time and infinite. Due to such uniqueness of sensor data characteristics, for some instances a finite-sized buffer may not accommodate the entire incoming data, which leads to inevitable loss of data, and requirement for fast processing makes it impossible to conduct a thorough investigation of data. In addition to the potential problem of loss of data, incoming data in its raw form may exhibit high degree of complexity which evades simple query or alerting services for capturing and extracting useful information. Furthermore, as traditional mining techniques are developed to handle fixed, static historical data, they are not useful and directly applicable for analyzing the sensor data. In this paper, (1) describe how three mining techniques (sensor data outlier analysis, sensor pattern analysis, and sensor data prediction analysis) are appropriate for the USN middleware structure, with their application to the stream data in ocean environment. (2) Another proposal is a middleware structure based on USN environment adaptive to above mining techniques. This middleware structure includes sensor nodes, sensor network common interface, sensor data processor, sensor query processor, database, sensor data mining engine, user interface and so on.

  • PDF

Noise-induced Stress Response on Cortisol, Glucose, albumin and Glucocorticoid Receptor Expression in the Japanese eel, Anguilla japonica (소음스트레스에 대한 뱀장어의 코티졸, 글루코스, 알부민과 Glucocorticoid Receptor 유전자 발현 연구)

  • Park, Young-Chul;Kang, Yong-Jin;Jeon, Hyoung-Joo;Han, Kyung-Nam;Baek, Jae-Min;Lee, Wan-Ok;Kim, Jin-Hyoung
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.6
    • /
    • pp.853-860
    • /
    • 2011
  • We measured blood plasma parameters(cortisol, glucose, albumin) and glucocorticoid receptor(GCR) gene expression level of the Japanese eel(Anguilla japonica) exposed to an explosion noise for an hour in order to evaluate the effects of noise stress and to explore the possibility of these parameters as biomarkers on noise stress for one of this valuable aquaculture species. Plasma cortisol and glucose reached high levels with significant differences compared to the control group, whereas albumin showed a low value after 1 h of exposure. In addition, tissue distribution of GCR gene expression was studied by real-time RT-PCR of ten organs(brain, eye, gill, gonad, heart, intestine, kidney, liver, muscle and skin). Liver showed the highest level of expression in the control followed by gill, muscle and intestine. A time-course study revealed induction in liver, gill, muscle and intestine after 30 min or 1 h of noise exposure.