• Title/Summary/Keyword: Real-time Object Classification

Search Result 74, Processing Time 0.023 seconds

ONNX-based Runtime Performance Analysis: YOLO and ResNet (ONNX 기반 런타임 성능 분석: YOLO와 ResNet)

  • Jeong-Hyeon Kim;Da-Eun Lee;Su-Been Choi;Kyung-Koo Jun
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.89-100
    • /
    • 2024
  • In the field of computer vision, models such as You Look Only Once (YOLO) and ResNet are widely used due to their real-time performance and high accuracy. However, to apply these models in real-world environments, factors such as runtime compatibility, memory usage, computing resources, and real-time conditions must be considered. This study compares the characteristics of three deep model runtimes: ONNX Runtime, TensorRT, and OpenCV DNN, and analyzes their performance on two models. The aim of this paper is to provide criteria for runtime selection for practical applications. The experiments compare runtimes based on the evaluation metrics of time, memory usage, and accuracy for vehicle license plate recognition and classification tasks. The experimental results show that ONNX Runtime excels in complex object detection performance, OpenCV DNN is suitable for environments with limited memory, and TensorRT offers superior execution speed for complex models.

Design and Implementation of Human and Object Classification System Using FMCW Radar Sensor (FMCW 레이다 센서 기반 사람과 사물 분류 시스템 설계 및 구현)

  • Sim, Yunsung;Song, Seungjun;Jang, Seonyoung;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.364-372
    • /
    • 2022
  • This paper proposes the design and implementation results for human and object classification systems utilizing frequency modulated continuous wave (FMCW) radar sensor. Such a system requires the process of radar sensor signal processing for multi-target detection and the process of deep learning for the classification of human and object. Since deep learning requires such a great amount of computation and data processing, the lightweight process is utmost essential. Therefore, binary neural network (BNN) structure was adopted, operating convolution neural network (CNN) computation in a binary condition. In addition, for the real-time operation, a hardware accelerator was implemented and verified via FPGA platform. Based on performance evaluation and verified results, it is confirmed that the accuracy for multi-target classification of 90.5%, reduced memory usage by 96.87% compared to CNN and the run time of 5ms are achieved.

Development of Active Data Mining Component for Web Database Applications (웹 데이터베이스 응용을 위한 액티브데이터마이닝 컴포넌트 개발)

  • Choi, Yong-Goo
    • Journal of Information Technology Applications and Management
    • /
    • v.15 no.2
    • /
    • pp.1-14
    • /
    • 2008
  • The distinguished prosperity of information technologies from great progress of e-business during the last decade has unavoidably made software development for active data mining to discovery hidden predictive information regarding business trends and behavior from vary large databases. Therefore this paper develops an active mining object(ADMO) component, which provides real-time predictive information from web databases. The ADMO component is to extended ADO(ActiveX Data Object) component to active data mining component based on COM(Component Object Model) for application program interface(API). ADMO component development made use of window script component(WSC) based on XML(eXtensible Markup Language). For the purpose of investigating the application environments and the practical schemes of the ADMO component, experiments for diverse practical applications were performed in this paper. As a result, ADMO component confirmed that it could effectively extract the analytic information of classification and aggregation from vary large databases for Web services.

  • PDF

Object Detection Using Deep Learning Algorithm CNN

  • S. Sumahasan;Udaya Kumar Addanki;Navya Irlapati;Amulya Jonnala
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.129-134
    • /
    • 2024
  • Object Detection is an emerging technology in the field of Computer Vision and Image Processing that deals with detecting objects of a particular class in digital images. It has considered being one of the complicated and challenging tasks in computer vision. Earlier several machine learning-based approaches like SIFT (Scale-invariant feature transform) and HOG (Histogram of oriented gradients) are widely used to classify objects in an image. These approaches use the Support vector machine for classification. The biggest challenges with these approaches are that they are computationally intensive for use in real-time applications, and these methods do not work well with massive datasets. To overcome these challenges, we implemented a Deep Learning based approach Convolutional Neural Network (CNN) in this paper. The Proposed approach provides accurate results in detecting objects in an image by the area of object highlighted in a Bounding Box along with its accuracy.

Convolutional Neural Network-based Real-Time Drone Detection Algorithm (심층 컨벌루션 신경망 기반의 실시간 드론 탐지 알고리즘)

  • Lee, Dong-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.425-431
    • /
    • 2017
  • As drones gain more popularity these days, drone detection becomes more important part of the drone systems for safety, privacy, crime prevention and etc. However, existing drone detection systems are expensive and heavy so that they are only suitable for industrial or military purpose. This paper proposes a novel approach for training Convolutional Neural Networks to detect drones from images that can be used in embedded systems. Unlike previous works that consider the class probability of the image areas where the class object exists, the proposed approach takes account of all areas in the image for robust classification and object detection. Moreover, a novel loss function is proposed for the CNN to learn more effectively from limited amount of training data. The experimental results with various drone images show that the proposed approach performs efficiently in real drone detection scenarios.

Comparison of Region-based CNN Methods for Defects Detection on Metal Surface (금속 표면의 결함 검출을 위한 영역 기반 CNN 기법 비교)

  • Lee, Minki;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.865-870
    • /
    • 2018
  • A machine vision based industrial inspection includes defects detection and classification. Fast inspection is a fundamental problem for many applications of real-time vision systems. It requires little computation time and localizing defects robustly with high accuracy. Deep learning technique have been known not to be suitable for real-time applications. Recently a couple of fast region-based CNN algorithms for object detection are introduced, such as Faster R-CNN, and YOLOv2. We apply these methods for an industrial inspection problem. Three CNN based detection algorithms, VOV based CNN, Faster R-CNN, and YOLOv2, are experimented for defect detection on metal surface. The results for inspection time and various performance indices are compared and analysed.

Highway Incident Detection and Classification Algorithms using Multi-Channel CCTV (다채널 CCTV를 이용한 고속도로 돌발상황 검지 및 분류 알고리즘)

  • Jang, Hyeok;Hwang, Tae-Hyun;Yang, Hun-Jun;Jeong, Dong-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.23-29
    • /
    • 2014
  • The advanced traffic management system of intelligent transport systems automates the related traffic tasks such as vehicle speed, traffic volume and traffic incidents through the improved infrastructures like high definition cameras, high-performance radar sensors. For the safety of road users, especially, the automated incident detection and secondary accident prevention system is required. Normally, CCTV based image object detection and radar based object detection is used in this system. In this paper, we proposed the algorithm for real time highway incident detection system using multi surveillance cameras to mosaic video and track accurately the moving object that taken from different angles by background modeling. We confirmed through experiments that the video detection can supplement the short-range shaded area and the long-range detection limit of radar. In addition, the video detection has better classification features in daytime detection excluding the bad weather condition.

Development of CCTV Cooperation Tracking System for Real-Time Crime Monitoring (실시간 범죄 모니터링을 위한 CCTV 협업 추적시스템 개발 연구)

  • Choi, Woo-Chul;Na, Joon-Yeop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.546-554
    • /
    • 2019
  • Typically, closed-circuit television (CCTV) monitoring is mainly used for post-processes (i.e. to provide evidence after an incident has occurred), but by using a streaming video feed, machine-based learning, and advanced image recognition techniques, current technology can be extended to respond to crimes or reports of missing persons in real time. The multi-CCTV cooperation technique developed in this study is a program model that delivers similarity information about a suspect (or moving object) extracted via CCTV at one location and sent to a monitoring agent to track the selected suspect or object when he, she, or it moves out of range to another CCTV camera. To improve the operating efficiency of local government CCTV control centers, we describe here the partial automation of a CCTV control system that currently relies upon monitoring by human agents. We envisage an integrated crime prevention service, which incorporates the cooperative CCTV network suggested in this study and that can easily be experienced by citizens in ways such as determining a precise individual location in real time and providing a crime prevention service linked to smartphones and/or crime prevention/safety information.

Natural Object Recognition for Augmented Reality Applications (증강현실 응용을 위한 자연 물체 인식)

  • Anjan, Kumar Paul;Mohammad, Khairul Islam;Min, Jae-Hong;Kim, Young-Bum;Baek, Joong-Hwan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.143-150
    • /
    • 2010
  • Markerless augmented reality system must have the capability to recognize and match natural objects both in indoor and outdoor environment. In this paper, a novel approach is proposed for extracting features and recognizing natural objects using visual descriptors and codebooks. Since the augmented reality applications are sensitive to speed of operation and real time performance, our work mainly focused on recognition of multi-class natural objects and reduce the computing time for classification and feature extraction. SIFT(scale invariant feature transforms) and SURF(speeded up robust feature) are used to extract features from natural objects during training and testing, and their performance is compared. Then we form visual codebook from the high dimensional feature vectors using clustering algorithm and recognize the objects using naive Bayes classifier.

A Study of the Localization and Classification of Target Using Ultrasonic Sensors (초음파 센서를 이용한 측정면의 분류와 위치 측정에 관한 연구)

  • Lim, Hee-Seop;Go, Min-Su;Lee, Eung-Hyuk;Hong, Seung-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.370-373
    • /
    • 2002
  • This paper proposes a new measurement system determine the localization and the type of object which use only three ultrasonic sensors, one the transmitter, one the receiver and one transduce doing both transmitter and receiver. this system can classifies the type and determines the pose of the target object. it used the method of Pseudoamplitude Scan. So it significantly simple the sensing system and reduce the signal processing time so that the working environment can be recognized in real time.

  • PDF