• Title/Summary/Keyword: Real-time Embedded System

Search Result 800, Processing Time 0.026 seconds

Design and Implementation of Web Service S/W Platform for Remote Monitoring and Control (원격 감시제어를 위한 웹 서비스 S/W 플랫폼 설계 및 구현)

  • Lee, Tae-Hee;Kim, Joo-Man
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.12
    • /
    • pp.245-253
    • /
    • 2007
  • In this paper, we propose an effective web service software platform for remote monitoring and control. We removed the servlet container for better web service performance so as to improve the gSOAP processing which is an essential element of web service implementation. Furthermore, we designed the web service server/client software platform which can be applied to robot or ubiquitous sensor applications. For validation of this study we tested it by manufacturing robot hardware for monitoring control which combined tanks and sensors on a LDS4000 engine board mounted with a PXA270 processor. The practical excellence and the efficiency of the result of this study was validated by the comparison of gSOAP message exchange load between the web service client application and the conventional remote monitoring control technique through a web server.

Development of Operational Flight Program for Smart UAV (스마트무인기 비행운용프로그램 개발)

  • Park, Bum-Jin;Kang, Young-Shin;Yoo, Chang-Sun;Cho, Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.805-812
    • /
    • 2013
  • The operational flight program(OFP) which has the functions of I/O processing with avionics, flight control logic calculation, fault diagnosis and redundancy mode is embedded in the flight control computer of Smart UAV. The OFP was developed in the environment of PowerPC 755 processor and VxWorks 5.5 real-time operating system. The OFP consists of memory access module, device I/O signal processing module and flight control logic module, and each module was designed to hierarchical structure. Memory access and signal processing modules were verified from bench test, and flight control logic module was verified from hardware-in-the-loop simulation(HILS) test, ground integration test, tethered test and flight test. This paper describes development environment, software structure, verification and management method of the OFP.

Simulator Development of Wireless Avionics Intra-Communications (항공기내 무선 네트워크용 시뮬레이터 개발)

  • Shin, Dong-Seong;Jung, Bang Chul;Ban, Tae-Won;Chang, Woohyuk;Park, Pangun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1873-1878
    • /
    • 2017
  • Recently, many researches have been conducted on the aviation industry to replace the wire harness cable between the avionics of the aircraft with the wireless network. In this paper, we present an Event-Based Simulator for Wireless Avionics Intra-Communications (ES-WAIC) that can verify core technologies of wireless networks and efficiently integrate different layers of the network. ES-WAIC is developed to enhance the readability between the real time control application developers of the higher layer and the network layer developers. Specifically, the practical implement relies on an event-based programming concept to increase portability and compatibility that can be applied to the realistic low-power wireless embedded networks. ES-WAIC implements the overall system layers including the wireless channel modeling of the 4.4GHz band, the physical layer, the medium access control, the network, and the application layer of wireless avionics intra-communications.

Fuzzy Navigation and Obstacle Avoidance Control for Docking of Modular Robots (모듈형 로봇의 자가 결합을 위한 퍼지 주행 제어 및 장애물 회피 제어)

  • Na, Doo-Young;Noh, Su-Hee;Moon, Hyung-Pil;Jung, Jin-Woo;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.470-477
    • /
    • 2009
  • Modular reconfigurable robots with physical docking capability easily adapt to a new environment and many studies are necessary for the modular robots. In this paper, we propose a vision-based fuzzy autonomous docking controller for the modular docking robots. A modular docking robot platform which performs real-time image processing is designed and color-based object recognition method is implemented on the embedded system. The docking robot can navigate to a subgoal near a target robot while avoiding obstacles. Both a fuzzy obstacle avoidance controller and a fuzzy navigation controller for subgoal tracking are designed. We propose an autonomous docking controller using the fuzzy obstacle avoidance and navigation controllers, absolute distance information and direction informations of robots from PSD sensors and a compass sensor. We verify the proposed docking control method by docking experiments of the developed modular robots in the various environments with different distances and directions between robots.

The Design and Implementation of Sensor Data Processing Module Based on TinyOS Utilizing TinyDB and LineTracer (TinyDB와 라인트레이서를 활용한 TinyOS기반의 센서 데이터 처리 모듈 설계 및 구현)

  • Lee, Sang-Hoon;Moon, Seung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10B
    • /
    • pp.883-890
    • /
    • 2006
  • The study of sensor network database is beginning to liven up as we are interested in Ubiquitous Computing technology in hardware, communication, database and so on. Especially, as new smart sensors have capabilities of real-time information gathering and analysis of each sensor node, data processing becomes an important issue in Ubiquitous Computing. In thesis, we have applied TinyDB(query processing system) to carry sensor node with line tracer which can follow the fixed path. After we gathered data around path, we have processed data in TinyDB GUI, gathered data, displayed data on a web server. Also we have a web browser on an embedded board for convenient user interface and implemented touch screen such that users can operate with a finger.

Design and Implementation of High-Resolution Image Transmission Interface for Mobile Device (모바일 환경을 위한 맞춤형 서비스 유비쿼터스 영상전송 시스템의 설계)

  • Lee, Sang-Wook;Ahn, Yong-Beom;Kim, Eung-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.791-799
    • /
    • 2008
  • An image recognition for surrounding conditions is very important in image transmission. In recently rears, as the information infrastructure is more general, the user-centered demands in which they want to identify by object's states image using wire or wireless environment have increased. However, existing mobile solution could be hard to expect high quality mage, because limitation of software processing according as network based on mobile terminal which has low band width supports software codec. To solve this weak point, this paper describes on hardware codec design based on MPEG-4 which is international video compression standard. Implemented system contains the embedded CPU for optimized design and it works high quality service as transmission speed and resolution in mobile circumstance.

The Development of Rule-based AI Engagement Model for Air-to-Air Combat Simulation (공대공 전투 모의를 위한 규칙기반 AI 교전 모델 개발)

  • Minseok, Lee;Jihyun, Oh;Cheonyoung, Kim;Jungho, Bae;Yongduk, Kim;Cheolkyu, Jee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.637-647
    • /
    • 2022
  • Since the concept of Manned-UnManned Teaming(MUM-T) and Unmanned Aircraft System(UAS) can efficiently respond to rapidly changing battle space, many studies are being conducted as key components of the mosaic warfare environment. In this paper, we propose a rule-based AI engagement model based on Basic Fighter Maneuver(BFM) capable of Within-Visual-Range(WVR) air-to-air combat and a simulation environment in which human pilots can participate. In order to develop a rule-based AI engagement model that can pilot a fighter with a 6-DOF dynamics model, tactical manuals and human pilot experience were configured as knowledge specifications and modeled as a behavior tree structure. Based on this, we improved the shortcomings of existing air combat models. The proposed model not only showed a 100 % winning rate in engagement with human pilots, but also visualized decision-making processes such as tactical situations and maneuvering behaviors in real time. We expect that the results of this research will serve as a basis for development of various AI-based engagement models and simulators for human pilot training and embedded software test platform for fighter.

Student Group Division Algorithm based on Multi-view Attribute Heterogeneous Information Network

  • Jia, Xibin;Lu, Zijia;Mi, Qing;An, Zhefeng;Li, Xiaoyong;Hong, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3836-3854
    • /
    • 2022
  • The student group division is benefit for universities to do the student management based on the group profile. With the widespread use of student smart cards on campus, especially where students living in campus residence halls, students' daily activities on campus are recorded with information such as smart card swiping time and location. Therefore, it is feasible to depict the students with the daily activity data and accordingly group students based on objective measuring from their campus behavior with some regular student attributions collected in the management system. However, it is challenge in feature representation due to diverse forms of the student data. To effectively and comprehensively represent students' behaviors for further student group division, we proposed to adopt activity data from student smart cards and student attributes as input data with taking account of activity and attribution relationship types from different perspective. Specially, we propose a novel student group division method based on a multi-view student attribute heterogeneous information network (MSA-HIN). The network nodes in our proposed MSA-HIN represent students with their multi-dimensional attribute information. Meanwhile, the edges are constructed to characterize student different relationships, such as co-major, co-occurrence, and co-borrowing books. Based on the MSA-HIN, embedded representations of students are learned and a deep graph cluster algorithm is applied to divide students into groups. Comparative experiments have been done on a real-life campus dataset collected from a university. The experimental results demonstrate that our method can effectively reveal the variability of student attributes and relationships and accordingly achieves the best clustering results for group division.

Development of UAV Flight Control Software using Model-Based Development(MBD) Technology (모델기반 개발기술을 적용한 무인항공기 비행제어 소프트웨어 개발)

  • Moon, Jung-Ho;Shin, Sung-Sik;Choi, Seung-Kie;Cho, Shin-Je;Rho, Eun-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1217-1222
    • /
    • 2010
  • This paper describes the Model-Based Development(MBD) process behind the flight control software of a close-range unmanned aerial vehicle(KUS-9). An integrated development environment was created using a commercial tool(MATLAB $Simulink^{(R)}$), which was utilized to design models for linear/nonlinear simulation, flight control law, operational logic and HILS(Hardware In the Loop Simulation) system. Software requirements were validated through flight simulations and peer reviews during the design process, whereas the models were verified through the application of a DO-178B verification tool. The integrity of automatically generated C code was verified by using a separate S/W testing tool. The finished software product was embedded on two different types of hardware and real-time operating system(uC/OS-II, VxWorks) to perform HILS and flight tests. The key findings of this study are that MBD Technology enables the development of a reusable and an extensible software product and auto-code generation technology allows the production of a highly reliable flight control software under a compressed time schedule.

Edge Detection System for Noisy Video Sequences Using Partial Reconfiguration (부분 재구성을 이용한 노이즈 영상의 경계선 검출 시스템)

  • Yoon, Il-Jung;Joung, Hee-Won;Kim, Seung-Jong;Min, Byong-Seok;Lee, Joo-Heung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.21-31
    • /
    • 2017
  • In this paper, the Zynq system-on-chip (SoC) platform is used to design an adaptive noise reduction and edge-detection system using partial reconfiguration. Filters are implemented in a partially reconfigurable (PR) region to provide high computational complexity in real-time, 1080p video processing. In addition, partial reconfiguration enables better utilization of hardware resources in the embedded system from autonomous replacement of filters in the same PR region. The proposed edge-detection system performs adaptive noise reduction if the noise density level in the incoming video sequences exceeds a given threshold value. Results of implementation show that the proposed system improves the accuracy of edge-detection results (14~20 times in Pratt's Figure of Merit) through self-reconfiguration of filter bitstreams triggered by noise density level in the video sequences. In addition, the ZyCAP controller implemented in this paper enables about 2.1 times faster reconfiguration when compared to a PCAP controller.