• Title/Summary/Keyword: Real-time Embedded System

Search Result 802, Processing Time 0.031 seconds

Research on Touch Function capable of Real-time Response in Low-end Embedded System (저사양 임베디드 시스템에서의 실시간 응답이 가능한 터치 기능 연구)

  • Lee, Yong-Min;Han, Chang Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.37-41
    • /
    • 2021
  • This paper presents a study to implement a touch screen capable of real-time response processing in a low-end embedded system. This was done by introducing an algorithm using an interpolation method to represent real-time response characteristics when a touch input is performed. In this experiment, we applied a linear interpolation algorithm that estimates random data by deriving a first-order polynomial from 2-point data. We also applied a Lagrange interpolation algorithm that estimates random data by deriving a quadratic polynomial from 3-point data. As a result of the experiment, it was found that the Lagrange interpolation method was more complicated than the linear interpolation method, and the processing speed was slow, so the text was not smooth. When using the linear interpolation method, it was confirmed that the speed displayed on a screen is 2.4 times faster than when using the Lagrange interpolation method. For real-time response characteristics, it was confirmed that smaller size of the executable file of the algorithm is more advantageous than the superiority of the algorithm itself. In conclusion, in order to secure real-time response characteristics in a low-end embedded system, it was confirmed that a relatively simple linear interpolation algorithm performs touch operations with better real-time response characteristics than the Lagrange interpolation method.

Applicability of Bluetooth and ZigBee in Wireless Networked Control System (무선 네트워크 제어시스템에서의 블루투스와 지그비의 적용 가능성)

  • Park, Jung-Il
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • This paper describes the applicability of Bluetooth and ZigBee networks for real-time control in wireless networked control system and suggests an effective usage of them. The Bluetooth SCO link, SPP and HID profiles and the ZigBee non-beacon enabled network are analyzed and the latency of them are measured. A number of wireless networked control system experiments are performed via DC motor control system and the various profiles of Bluetooth and ZigBee in real-time wireless networked control system are compared.

Implementation of Real-Time Monitoring System for Livestock Growth Environment Information using Wireless Sensor Network (무선센서 네트워크를 이용한 가축생육환경정보 실시간 모니터링 시스템 구현)

  • Kim, Young-Wung;Paik, Seung-Hyun;Jon, Yong-Jun;Lee, Dae-Ki;Park, Hong Bae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.6
    • /
    • pp.301-309
    • /
    • 2012
  • In this paper, a real-time monitoring system based on WSN is designed and implemented to monitor livestock growth environment information which includes the temperature, humidity and harmful gases such as $CO_{2},\;CO,\;NH_{3},\;H_{2}S$ and so on. The proposed system consists of the wireless sensor nodes, the monitoring management device, the management server and the user interface program based on PC/Smart phone. To verify the performance of the implemented system, gas measurement experiments are performed in laboratory environment by using the designed wireless sensor nodes. And it is able to estimate the concentration of gases. The implemented system is able to monitor the proposed environmental element information through the developed GUI.

Development of an Image Tracking System Using an USB Camera on an Embedded System (USB Camera를 이용한 이미지 트래킹을 위한 Pan/Tilt 제어용 Embedded System 개발)

  • Kim, Hie-Sik;Nam, Chul;Ayurzana, Odgera;Ha, Kwan-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.182-184
    • /
    • 2005
  • An embedded system has been applied to many fields including households and industrial sites. The embedded system is implemented fur image tracking in security area. This system supports a fixed IP far the reliable server operation on TCP/IP networks. A real time video image on the is analyzed to detect a certain invader who jumped into the observed area. The digital camera is connected at the USB host port of the target board. The video images from the video camera is continuously analyzed and displayed at the Linux web-server. The moving vector of the invaders on the continuous image frames is calculated and then it sends the calculated pan/tilt movement. That used Block matching algorithm and edge detection algorithm for past speed. And the displacement vector is used at pan/tilt motor control through RS232 serial cable. The experiment result showed tracking performance by the moving part speed of 10 to 150 pixels/sec.

  • PDF

Development Based on Signal Processing Platform for Automotive UWB Radar System (차량용 UWB 레이다를 위한 DSP 기반의 신호처리 모듈 플랫폼 개발)

  • Ju, Yeonghwan;Kim, Sang-Dong;Lee, Jong-Hun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.5
    • /
    • pp.319-325
    • /
    • 2011
  • Recently, collision avoidance systems are under development to reduce the traffic accidents and driver comfort for automotive radar. Pulse radar can detect their range and velocities of moving vehicles using range gate and FFT(Fast Fourier Transform) of the doppler frequency. We designed the real time DSP(Digital Signal Processing) based automotive UWB(Ultra Wideband) radar, and implemented DSP to detect the range and velocity within 100ms for real time system of the automotive UWB radar. We also measured the range and velocity of a moving vehicle using designed automotive UWB radar in a real road environment.

Real-time Auto Tracking System using PTZ Camera with DSP

  • Jeong, Cheol-Jun;Park, Goo-Man
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.32-35
    • /
    • 2013
  • In this paper we proposed a PTZ camera system which automatically detect and track moving objects in the image. Once a moving object is detected the PTZ camera traces it in real-time. We proposed the control system which does not depend on camera focusing functionality but uses the object's center, moving direction, distance and speed. We implemented the system with the TI DM6446 DSP chip. The experimental result shows that the system has excellent performance for high speed vehicles.

Appliance identification algorithm using multiple classifier system (다중 분류 시스템을 이용한 가전기기 식별 알고리즘)

  • Park, Yong-Soon;Chung, Tae-Yun;Park, Sung-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.4
    • /
    • pp.213-219
    • /
    • 2015
  • Real-time energy monitoring systems is a demand-response system which is reported to be effective in saving energy up to 12%. Real-time energy monitoring system is commonly composed of smart-plugs which sense how much electrical power is consumed and IHD(In-Home Display device) which displays power consumption patterns. Even though the monitoring system is effective, users should themselves match which smart plus is connected to which appliance. In order to make the matching work to be automatic, the monitoring system need to have appliance identification algorithm, and some works have made under the name of NILM(Non-Intrusive Load Monitoring). This paper proposed an algorithm which utilizes multiple classifiers to improve accuracy of appliance identification. The algorithm proposes to understand each classifiers performance, that is, when a classifier make a result how much the result is reliable, and utilize it in choosing the final result among result candidates from many classifiers. By using the proposed algorithm this paper make 4.5% of improved accuracy with respect to using single best classifier, and 2.9% of improved accuracy with respect to other method using multiple classifiers, so called CDM(Commitee Decision Mechanism) method.

Decentralized civil structural control using real-time wireless sensing and embedded computing

  • Wang, Yang;Swartz, R. Andrew;Lynch, Jerome P.;Law, Kincho H.;Lu, Kung-Chun;Loh, Chin-Hsiung
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.321-340
    • /
    • 2007
  • Structural control technologies have attracted great interest from the earthquake engineering community over the last few decades as an effective method of reducing undesired structural responses. Traditional structural control systems employ large quantities of cables to connect structural sensors, actuators, and controllers into one integrated system. To reduce the high-costs associated with labor-intensive installations, wireless communication can serve as an alternative real-time communication link between the nodes of a control system. A prototype wireless structural sensing and control system has been physically implemented and its performance verified in large-scale shake table tests. This paper introduces the design of this prototype system and investigates the feasibility of employing decentralized and partially decentralized control strategies to mitigate the challenge of communication latencies associated with wireless sensor networks. Closed-loop feedback control algorithms are embedded within the wireless sensor prototypes allowing them to serve as controllers in the control system. To validate the embedment of control algorithms, a 3-story half-scale steel structure is employed with magnetorheological (MR) dampers installed on each floor. Both numerical simulation and experimental results show that decentralized control solutions can be very effective in attaining the optimal performance of the wireless control system.

Development of Simulator for Hierarchical Battery Management System (계층적 배터리 관리 시스템 시뮬레이션 기술 개발)

  • Kang, Hyunwoo;Ahn, SungHo;Kim, Dongkyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.4
    • /
    • pp.213-218
    • /
    • 2013
  • In this research, we report on the development of simulation system for performance verification of BMS(Battery Management System) which is utilized in electric vehicles. In the industrial circles, a manufacturer of BMS typically tests their system with real battery packs. However, it takes a long time to test all functions of BMS. Here, we develop BMU(Battery Managament Unit) as an embedded board, which will be installed in electric vehicle for controlling battery packs. All other environment factors for testing BMU are developed in softwares in order to reduce the term of test. Especially, the proposed system consists of cell simulator and CMU(Cell Management Unit) simulator which simulate real battery cells and control battery cells. These simulators enable the BMU to test more battery cells. In addition, proposed system provides diagnosis program in order to diagnose and monitor the condition of BMS which makes the test of BMS more easily. In order to verify the performance of the developed simulator, we have performed the experiment with real battery packs and our simulator. Through comparing two results of experiments, we verify that developed simulator shows better performance in terms of less amount of testing duration though having high reliability.

Hardware Implementation for Real-Time Speech Processing with Multiple Microphones

  • Seok, Cheong-Gyu;Choi, Jong-Suk;Kim, Mun-Sang;Park, Gwi-Tea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.215-220
    • /
    • 2005
  • Nowadays, various speech processing systems are being introduced in the fields of robotics. However, real-time processing and high performances are required to properly implement speech processing system for the autonomous robots. Achieving these goals requires advanced hardware techniques including intelligent software algorithms. For example, we need nonlinear amplifier boards which are able to adjust the compression radio (CR) via computer programming. And the necessity for noise reduction, double-buffering on EPLD (Erasable programmable logic device), simultaneous multi-channel AD conversion, distant sound localization will be explained in this paper. These ideas can be used to improve distant and omni-directional speech recognition. This speech processing system, based on embedded Linux system, is supposed to be mounted on the new home service robot, which is being developed at KIST (Korea Institute of Science and Technology)

  • PDF