• Title/Summary/Keyword: Real-time Drone image

Search Result 38, Processing Time 0.023 seconds

Forest Fire Detection System using Drone Streaming Images (드론 스트리밍 영상 이미지 분석을 통한 실시간 산불 탐지 시스템)

  • Yoosin Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.685-689
    • /
    • 2023
  • The proposed system in the study aims to detect forest fires in real-time stream data received from the drone-camera. Recently, the number of wildfires has been increasing, and also the large scaled wildfires are frequent more and more. In order to prevent forest fire damage, many experiments using the drone camera and vision analysis are actively conducted, however there were many challenges, such as network speed, pre-processing, and model performance, to detect forest fires from real-time streaming data of the flying drone. Therefore, this study applied image data processing works to capture five good image frames for vision analysis from whole streaming data and then developed the object detection model based on YOLO_v2. As the result, the classification model performance of forest fire images reached upto 93% of accuracy, and the field test for the model verification detected the forest fire with about 70% accuracy.

Convolutional Neural Network-based Real-Time Drone Detection Algorithm (심층 컨벌루션 신경망 기반의 실시간 드론 탐지 알고리즘)

  • Lee, Dong-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.425-431
    • /
    • 2017
  • As drones gain more popularity these days, drone detection becomes more important part of the drone systems for safety, privacy, crime prevention and etc. However, existing drone detection systems are expensive and heavy so that they are only suitable for industrial or military purpose. This paper proposes a novel approach for training Convolutional Neural Networks to detect drones from images that can be used in embedded systems. Unlike previous works that consider the class probability of the image areas where the class object exists, the proposed approach takes account of all areas in the image for robust classification and object detection. Moreover, a novel loss function is proposed for the CNN to learn more effectively from limited amount of training data. The experimental results with various drone images show that the proposed approach performs efficiently in real drone detection scenarios.

Deep Learning Based Real-Time Painting Surface Inspection Algorithm for Autonomous Inspection Drone

  • Chang, Hyung-young;Han, Seung-ryong;Lim, Heon-young
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.253-257
    • /
    • 2019
  • A deep learning based real-time painting surface inspection algorithm is proposed herein, designed for developing an autonomous inspection drone. The painting surface inspection is usually conducted manually. However, the manual inspection has a limitation in obtaining accurate data for correct judgement on the surface because of human error and deviation of individual inspection experiences. The best method to replace manual surface inspection is the vision-based inspection method with a camera, using various image processing algorithms. Nevertheless, the visual inspection is difficult to apply to surface inspection due to diverse appearances of material, hue, and lightning effects. To overcome technical limitations, a deep learning-based pattern recognition algorithm is proposed, which is specialized for painting surface inspections. The proposed algorithm functions in real time on the embedded board mounted on an autonomous inspection drone. The inspection results data are stored in the database and used for training the deep learning algorithm to improve performance. The various experiments for pre-inspection of painting processes are performed to verify real-time performance of the proposed deep learning algorithm.

Experiments of RTK based Precision Landing for Rotary Wing Drone (RTK를 이용한 회전익 드론 정밀 착륙 실험)

  • Young-Kyu Kim;Jin-Woung Jang;Jong-Hee Lee;Jong-Ho Yoo;Seungh Hyun Paik;Dae-Nyeon Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.75-80
    • /
    • 2023
  • Unmanned drone stations for automatic charging have been developed in order to overcome the flying time limitation of rotary wing drones. Since the drone stations is an unmanned operating system, each of the drones will be required to have a high degree of landing accuracy. Drone precision landing has been mainly studied depended on image processing technologies, but the image processing systems make several problems, such as the mission weight, the drone cost, and the development complexity increases, and the flight time decrease. Thus, this paper researched accuracy of precision landing based on RTK (real time kinetics) for rotary wing drones. For the experiments of RTK based precision landing, a drone repeatedly performed three missions. The survey accuracies of the RTK about missions respectively were set as 0.3, 0.2, and 0.1 meters. Each mission has one take-off point, two way-points and one landing-point, and was repeated ten times. The experiment results revealed landing error distance means of around 0.258, 0.12 and 0.057 meters on each of RTK setting.

Development of Face Recognition System based on Real-time Mini Drone Camera Images (실시간 미니드론 카메라 영상을 기반으로 한 얼굴 인식 시스템 개발)

  • Kim, Sung-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.17-23
    • /
    • 2019
  • In this paper, I propose a system development methodology that accepts images taken by camera attached to drone in real time while controlling mini drone and recognize and confirm the face of certain person. For the development of this system, OpenCV, Python related libraries and the drone SDK are used. To increase face recognition ratio of certain person from real-time drone images, it uses Deep Learning-based facial recognition algorithm and uses the principle of Triples in particular. To check the performance of the system, the results of 30 experiments for face recognition based on the author's face showed a recognition rate of about 95% or higher. It is believed that research results of this paper can be used to quickly find specific person through drone at tourist sites and festival venues.

A Study on Mapping Levees Using Drone Imagery (드론영상을 이용한 하천 제방 매핑에 관한 연구)

  • Choung, Yun-Jae;Park, Hyeon-Cheol;Choi, Soo-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.30-30
    • /
    • 2018
  • Research on mapping levees is an important task for assessing levee stability. The drone imagery acquired in river basins is useful for generating real-time levee maps. This research proposes a robust methodology for mapping levees in river basins using the drone imagery. In the first step, the multiple imagery taken in the test bed was acquired by the drone. Then, the orthorectified image and DEM (Digital Elevation Model) were generated by the photogrammetry and image processing process. Finally, the significant features on levee surfaces such as levee tops, levee lines, levee slopes, eroded areas were detected from the generated DEM and orthorectified image by manual labors and automatic methods. In future research, the automatic procedure for identifying the significant levee features from the drone imagery would be proposed.

  • PDF

Drone-based Power-line Tracking System (드론 기반의 전력선 추적 제어 시스템)

  • Jeong, Jongmin;Kim, Jaeseung;Yoon, Tae Sung;Park, Jin Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.773-781
    • /
    • 2018
  • In recent years, a study of power-line inspection using an unmanned aerial vehicle (UAV) has been actively conducted. However, relevant studies have been conducting power-line inspection with an UAV operated by manual control, and they have developed just power-line detection algorithm on aerial images. To overcome limitations of existing research, we propose a drone-based power-line tracking system in this paper. The main contributions of this paper are to operate developed system under configured environment and to develop a power-line detection algorithm in real-time. Developed system is composed of the power-line detection and the image-based tracking control. To detect a power-line in real-time, a region of interest (ROI) image is extracted. Furthermore, clustering algorithm is used in order to discriminate the power-line from background. Finally, the power-line is detected by using the Hough transform, and a center position and a tilt angle are estimated by using the Kalman filter to control a drone smoothly. We design a position controller and an attitude controller for image-based tracking control, and both controllers are designed based on the proportional-derivative (PD) control method. The interaction between the position controller and the attitude controller makes the drone track the power-line. Several experiments were carried out in environments where conditions are similar to actual environments, which demonstrates the superiority of the developed system.

A Study on the Analysis of the Current Situation of the Target Site Using the Image of Unmanned Aircraft in the Environmental Impact Assessment

  • Ki-Sun Song;Sun-Jib Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.381-388
    • /
    • 2023
  • Small-scale environmental impact assessments have limitations in terms of survey duration and evaluation resources, which can hinder the assessment and analysis of the current situation. In this study, we propose the use of drone technology during the environmental impact assessment process to supplement these limitations in the current situation analysis. Drone photography can provide rapid and accurate high-resolution images, allowing for the collection of various information about the target area. This information can include different types of data such as terrain, vegetation, landscape, and real-time 3D spatial information, which can be collected and processed using GIS software to understand and analyze the environmental conditions. In this study, we confirmed that terrain and vegetation analysis and prediction of the target area using drone photography and GIS analysis software is possible, providing useful information for environmental impact assessments.

Smart Target Detection System Using Artificial Intelligence (인공지능을 이용한 스마트 표적탐지 시스템)

  • Lee, Sung-nam
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.538-540
    • /
    • 2021
  • In this paper, we proposed a smart target detection system that detects and recognizes a designated target to provide relative motion information when performing a target detection mission of a drone. The proposed system focused on developing an algorithm that can secure adequate accuracy (i.e. mAP, IoU) and high real-time at the same time. The proposed system showed an accuracy of close to 1.0 after 100k learning of the Google Inception V2 deep learning model, and the inference speed was about 60-80[Hz] when using a high-performance laptop based on the real-time performance Nvidia GTX 2070 Max-Q. The proposed smart target detection system will be operated like a drone and will be helpful in successfully performing surveillance and reconnaissance missions by automatically recognizing the target using computer image processing and following the target.

  • PDF

Ortho-image Generation using 3D Flight Route of Drone (드론의 3D 촬영 경로를 이용한 정사영상 제작)

  • Jonghyeon Yoon;Gihong Kim;Hyun Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.775-784
    • /
    • 2023
  • Drone images are being used more and more actively in the fields of surveying and spatial information, and are rapidly replacing existing aerial and satellite images. The technology of quickly acquiring real-time data at low cost and processing it is now being applied to actual industries beyond research. However, there are also problems encountered as this progresses. When high-resolution spatial information is acquired using a general 2D flight plan for a terrain with sever undulations, problems arise due to the difference in resolution of the data. In particular, when a low-altitude high-resolution image is taken using a drone in a mountainous or steep terrain, there may be a problem in image matching due to a resolution difference caused by terrain undulations. This problem occurs because a drone acquires data while flying on a 2D plane at a fixed altitude, just like conventional aerial photography. In order to acquire high-quality 3D data using a drone, the scale difference for the shooting distance should be considered. In addition, in order to obtain facade images of large structures, it is necessary to take images in 3D space. In this study, in order to improve the disadvantages of the 2D flight method, a 3D flight plan was established for the study area, and it was confirmed that high-quality 3D spatial information could be obtained in this way.