• Title/Summary/Keyword: Real-time 3D visualization

Search Result 102, Processing Time 0.03 seconds

A Cost-Effective Hardware Image Compositor for Sort-Last Parallel Visualization Clusters (후정렬 병렬 가시화 클러스터를 위한 저비용의 하드웨어 영상 합성기)

  • Taropa Emanuel;Lee Won-Jong;Srini Vason P.;Han Tack-Don
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.712-714
    • /
    • 2005
  • Real-time 3D visualization of large datasets imposes a distributed architecture of the rendering system and dedicated hardware for image composition. Previous work on this domain has relied on prohibitively expensive cluster systems with hardware composition done by complicated schemes. In this paper we propose a low-cost hardware compositor fur a high performance visualization cluster. We show the system's design and the results obtained using Simulink [1] for our image composition scheme.

  • PDF

Visualization of Scattered Plasma-based Particle Acceleration Data (산포된 플라즈마 기반의 가속입자 자료 가시화)

  • Shin, Han Sol;Yu, Tae Jun;Lee, Kun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.65-70
    • /
    • 2015
  • Particle accelerator has mainly used in nuclear field only because of the large scale of the facility. However, since laser-plasma particle accelerator which has smaller size and spends less cost developed, the availability of this accelerator is expended to various research fields such as industrial and medical. This paper suggests a visualization system to control the laser-plasma particle accelerator efficiently. This system offers real-time 3D images via convert HDF file comes from plasma data obtained from PIC simulation into OpenGL texture type to analyse and modify plasma data. After that, it stores high-resolution rendering images of the data with external renderer hereafter.

VR, AR Simulation and 3D Printing for Shoulder and Elbow Practice (VR, AR 시뮬레이션 및 3D Printing을 활용한 어깨와 팔꿈치 수술실습)

  • Lim, Wonbong;Moon, Young Lae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.175-179
    • /
    • 2016
  • Recent advances in technology of medical image have made surgical simulation that is helpful to diagnosis, operation plan, or education. Improving and enhancing the medical imaging have led to the availability of high definition images and three-dimensional (3D) visualization, it allows a better understanding in the surgical and educational field. The Real human field of view is stereoscopic. Therefore, with just 2D images, stereoscopic reconstruction process through the surgeon's head, is necessary. To reduce these process, 3D images have been used. 3D images enhanced 3D visualization, it provides significantly shorter time for surgeon for judgment in complex situations. Based on 3D image data set, virtual medical simulations, such as virtual endoscopy, surgical planning, and real-time interaction, have become possible. This article describes principles and recent applications of newer imaging techniques and special attention is directed towards medical 3D reconstruction techniques. Recent advances in technology of CT, MR and other imaging modalities has resulted in exciting new solutions and possibilities of shoulder imaging. Especially, three-dimensional (3D) images derived from medical devices provides advanced information. This presentation describes the principles and potential applications of 3D imaging techniques, simulation and printing in shoulder and elbow practice.

RAPID GEOMETRIC 3D MODELING FOR AUTOMATED CONSTRUCTION EQUIPMENT

  • Jo, Yong-Gwon;Hass, Carl T.
    • Construction Engineering and Management
    • /
    • v.4 no.1 s.13
    • /
    • pp.55-60
    • /
    • 2003
  • Unstructured workspaces which are typical in construction contain unpredicable activities as well as changing environments. Most automated and semi-automated construction tasks require real-time information about the local workspace in the form of 3D geometric models. This paper describes and demonstrates a new rapid, local area geometric data extraction and 3D visualization method for unstructured construction workspaces that combines human perception, simple sensors, and descriptive CAD models. The rapid approach will be useful in construction in construction in order to optimize automated equipment tasks and to significantly improve safety and a remote operator's spatial perception of the workspace.

Development of Mobile 3D Urban Landscape Authoring and Rendering System

  • Lee Ki-Won;Kim Seung-Yub
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.221-228
    • /
    • 2006
  • In this study, an integrated 3D modeling and rendering system dealing with 3D urban landscape features such as terrain, building, road and user-defined geometric ones was designed and implemented using $OPENGL\;{|}\;ES$ (Embedded System) API for mobile devices of PDA. In this system, the authoring functions are composed of several parts handling urban landscape features: vertex-based geometry modeling, editing and manipulating 3D landscape objects, generating geometrically complex type features with attributes for 3D objects, and texture mapping of complex types using image library. It is a kind of feature-based system, linked with 3D geo-based spatial feature attributes. As for the rendering process, some functions are provided: optimizing of integrated multiple 3D landscape objects, and rendering of texture-mapped 3D landscape objects. By the active-synchronized process among desktop system, OPENGL-based 3D visualization system, and mobile system, it is possible to transfer and disseminate 3D feature models through both systems. In this mobile 3D urban processing system, the main graphical user interface and core components is implemented under EVC 4.0 MFC and tested at PDA running on windows mobile and Pocket Pc. It is expected that the mobile 3D geo-spatial information systems supporting registration, modeling, and rendering functions can be effectively utilized for real time 3D urban planning and 3D mobile mapping on the site.

A study on the three dimensional paper doll development with augmented reality technology (증강현실기술이 적용된 3D 인형놀이 개발에 대한 연구)

  • Kim, Tae-Eun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.3
    • /
    • pp.297-302
    • /
    • 2014
  • The AR(Augmented Reality) is the technique that make the fusion between real world and virtual object. The augmented object on real world can provide the visualization of digital information to user. Also, the real-time AR system makes the interaction between user and computers. Therefore, the immersion of user be increasing and help the information transfer to user with AR system. In this paper, we implement the AR system with the modeled VRML as a three-dimensional object using programming language. The application technique is proposed that augment the various virtual clothes to three-dimensional avatar. Moreover, we propose the novel interface by using marker that can be increase the immersion of user.

VRML Database Access for 3D Real-time Data Visualization in MiWiTM Thermal Wireless Sensor Network (마이와이 표준의 열 센서망의 3차원 실시간 자료 시각화를 위한 가상 현실 모델링 언어 데이터베이스 액세스)

  • Wan, Xue-Fen;Yang, Yi;Cui, Jian;Zheng, Tao;Ma, Li
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.164-170
    • /
    • 2012
  • A Virtual Reality Modeling Language (VRML) database access in remote virtual reality control platform for dyeing enterprise $MiWi^{TM}$ thermal sensor network is presented in this paper. The VRML-ASP framework is introduced for 3D real-time data plotting in this application. The activities of thermal sensor nodes and sensor area are analyzed. The database access framework is optimized for $MiWi^{TM}$ wireless sensor networks. The experimental results show that VRML-ASP database access framework could be a reliable and competitive data-manage candidate for targeted virtual reality remote industrial visualization application.

Design and Implementation of a Lightweight On-Device AI-Based Real-time Fault Diagnosis System using Continual Learning (연속학습을 활용한 경량 온-디바이스 AI 기반 실시간 기계 결함 진단 시스템 설계 및 구현)

  • Youngjun Kim;Taewan Kim;Suhyun Kim;Seongjae Lee;Taehyoun Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.3
    • /
    • pp.151-158
    • /
    • 2024
  • Although on-device artificial intelligence (AI) has gained attention to diagnosing machine faults in real time, most previous studies did not consider the model retraining and redeployment processes that must be performed in real-world industrial environments. Our study addresses this challenge by proposing an on-device AI-based real-time machine fault diagnosis system that utilizes continual learning. Our proposed system includes a lightweight convolutional neural network (CNN) model, a continual learning algorithm, and a real-time monitoring service. First, we developed a lightweight 1D CNN model to reduce the cost of model deployment and enable real-time inference on the target edge device with limited computing resources. We then compared the performance of five continual learning algorithms with three public bearing fault datasets and selected the most effective algorithm for our system. Finally, we implemented a real-time monitoring service using an open-source data visualization framework. In the performance comparison results between continual learning algorithms, we found that the replay-based algorithms outperformed the regularization-based algorithms, and the experience replay (ER) algorithm had the best diagnostic accuracy. We further tuned the number and length of data samples used for a memory buffer of the ER algorithm to maximize its performance. We confirmed that the performance of the ER algorithm becomes higher when a longer data length is used. Consequently, the proposed system showed an accuracy of 98.7%, while only 16.5% of the previous data was stored in memory buffer. Our lightweight CNN model was also able to diagnose a fault type of one data sample within 3.76 ms on the Raspberry Pi 4B device.

Realtime 3D Terrain Generation with Sound Data (사운드 데이터를 이용한 실시간 3차원 지형 생성)

  • Kim, Won-Seop;Chang, Kyu-Sik;Kim, Tae-Yong
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.184-189
    • /
    • 2008
  • In this paper, the sound data either from the sampled or streamed source are utilized for generating a map in the video game play for the dynamiccal use of sound data and synesthesia to users. When users can generate sound in real-time or put the sampled source, it is analyzed and re-processed through Fourier transformation to show the 3D map in dynamic shape over time. We interpolate the generated data to enable the game agents and objects to move.

  • PDF

Dual Autostereoscopic Display Platform for Multi-user Collaboration with Natural Interaction

  • Kim, Hye-Mi;Lee, Gun-A.;Yang, Ung-Yeon;Kwak, Tae-Jin;Kim, Ki-Hong
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.466-469
    • /
    • 2012
  • In this letter, we propose a dual autostereoscopic display platform employing a natural interaction method, which will be useful for sharing visual data with users. To provide 3D visualization of a model to users who collaborate with each other, a beamsplitter is used with a pair of autostereoscopic displays, providing a visual illusion of a floating 3D image. To interact with the virtual object, we track the user's hands with a depth camera. The gesture recognition technique we use operates without any initialization process, such as specific poses or gestures, and supports several commands to control virtual objects by gesture recognition. Experiment results show that our system performs well in visualizing 3D models in real-time and handling them under unconstrained conditions, such as complicated backgrounds or a user wearing short sleeves.