• 제목/요약/키워드: Real-parameter Optimization

검색결과 116건 처리시간 0.029초

GMM 기반 실시간 문맥독립화자식별시스템의 성능향상을 위한 프레임선택 및 가중치를 이용한 Hybrid 방법 (Hybrid Method using Frame Selection and Weighting Model Rank to improve Performance of Real-time Text-Independent Speaker Recognition System based on GMM)

  • 김민정;석수영;김광수;정호열;정현열
    • 한국멀티미디어학회논문지
    • /
    • 제5권5호
    • /
    • pp.512-522
    • /
    • 2002
  • 본 논문에서는 GMM(Gaussian Mixture Model)에 기반한 실시간문맥독립화자식별시스템[1][2]의 성능향상을 위하여 프레임선택(Frame Selection)방법과 프레임가중치(Weighting Model Rank)방법을 혼합한 hybrid방법을 제안한다. 본 시스템에서는 GMM의 파라미터를 최적화하기 위하여 MLE(Maximum likelihood estimation)방법과 인식 알고리즘으로 ML(Maximum Likelihood)을 기본적으로 사용하였다. 제안한 hybrid 방법은 두 단계로 이루어진다. 첫째, 화자모델과 테스트 데이터를 이용하여 프레임단위로 유사도를 계산하고, 가장 큰 유사도 값과 두 번째로 큰 유사도 값의 차를 계산한 후, 차가 문턱치보다 큰 프레임만을 선택한다 두 번째로, 선택되어진 프레임에서 계산되어진 유사도 값 대신에 가중치 값을 사용하여 전체 스코어를 계산한다. 특징 파라미터로서는 켑스트럼과 회귀계수를 사용하였으며, 학습과 테스트를 위한 데이터베이스는 채집기간이 다른 여러 데이터베이스들로 구성되어 있으며, 실험을 위한 데이터는 임의의 단어를 선택하여 사용하였다. 화자인식실험은 기본 시스템에 프레임선택방법, 프레임가중치방법, 제안한 Hybrid방법을 각각 적용하여 실험하였다. 실험결과, 프레임선택방법에 비해 평균 4%, 프레임가중치방법에 비해 평균 1%의 인식률 향상을 보여, 본 논문에서 적용한 hybrid방법의 유효성을 확인하였다.

  • PDF

히마와리 위성자료를 이용한 산불방사열에너지 산출 (Retrieval of Fire Radiative Power from Himawari-8 Satellite Data Using the Mid-Infrared Radiance Method)

  • 김대선;이양원
    • 대한공간정보학회지
    • /
    • 제24권4호
    • /
    • pp.105-113
    • /
    • 2016
  • 산불방사열에너지(fire radiative power)는 산불로부터 방출되는 에너지로서 산불의 연소과정에서 발생하는 온실가스를 추정하기 위한 기초자료로 이용된다. 유럽, 아프리카, 아메리카 지역의 정지궤도 위성센서들은 준실시간의 산불방사열에너지를 산출 및 제공하고 있지만 아시아권에는 아직까지 정지궤도 위성기반의 공식적인 산불방사열에너지 산출물이 제공되지 않고 있다. 본 연구에서는 중적외 복사휘도법(mid-infrared radiance method)을 이용하여 히마와리(Himawari-8) 위성 기반의 산불방사열에너지를 최초로 산출하였으며, 산출정확도를 검증하기 위해 인도네시아 수마트라 지역에 대해 Aqua/Terra 위성의 MODIS(moderate resolution imaging spectroradiometer) 산불방사열에너지 산출물과의 비교검증을 실시하였다. 이 과정에서 NDVI(normalized difference vegetation index)와 FVC(fraction of vegetation coverage)를 이용하여 중적외 복사휘도법의 중요인자인 지표면 방출률을 지면피복 종류에 따라 계산하였으며, 최적화 실험을 통하여 히마와리 AHI(advanced Himawari imager)의 센서계수 a = 3.11을 도출하였다. 본 연구를 통해 산출된 히마와리 산불방사열에너지는 MODIS를 기준으로 약 20%의 평균절대백분비오차를 나타내었으며 이는 미국과 유럽연합의 정지궤도위성의 산불방사열에너지 검증결과와 유사한 수준의 정확도로 평가된다. 히마와리 산불방사열에너지의 산출정확도는 산불의 크기와 위성관측각에 따라 일부 차이를 보였으나 태양천정각과 토지피복에 따른 영향은 거의 없는 것을 알 수 있었다. 이 연구는 아시아권의 정지궤도위성 산불방사열에너지 산출을 위한 참고자료로서 활용가치가 있으며 산불방출 온실가스 추정에 기초자료로 활용될 수 있을 것으로 기대한다.

하나의 비디오 입력을 위한 모습 기반법과 모델 사용법을 혼용한 사람 동작 추적법 (Human Motion Tracking by Combining View-based and Model-based Methods for Monocular Video Sequences)

  • 박지헌;박상호
    • 정보처리학회논문지B
    • /
    • 제10B권6호
    • /
    • pp.657-664
    • /
    • 2003
  • 사람의 동작을 믿을 수 있게 따라가는 것은 감시용 비디오나 사람과 컴퓨터간의 사용자 인터페이스 개발에 있어서 필수적이다. 이 논문은 모습 기반법(appearance-based method)과 모델 사용법을 혼용하여 사람을 추적하는 새로운 방법에 관한 논문이다. 하나의 비디오 입력이 화소 단위 및 물체 단위로 처리된다. 화소 단위의 처리에 있어서 개별 화소색을 분류하는 훈련방법으로, 가우스 혼합 모델(Gaussian mixture model)을 사용하였다. 물체 단위의 처리에 있어서 사람 몸에 대한 삼차원 모델링을 하고, 모델 몸체를 투사면(projection plane)에 투사시켰다. 투사된 몸체와 배경을 제외한 영상과 계산 기하 방법을 사용하여, 화소보다 작은 단위로 겹쳐지는 면적을 계산하였다. 우리의 방법은 정방향 기구학 (forward kinematics)을 사용하므로 역방향 기구학(inverse kinematics)을 사용하는 방법과 달리 계산 결함(singularity)을 갖지 않는다. 이 논문에서는 사람의 동작을 추적하기 위한 문제를 비선형 방정식 문제로 바꾸었다. 비선형 방정식의 비용 함수는 전경(foreground)의 영상 실루엣(silhouette)과 투사된 삼차원 모델 몸체의 실루엣의 겹쳐지는 면적이다. 화소 단위의 영상을 화소를 하나의 면적으로 계산함으로써, 겹쳐지는 면적에 대한 실수 단위의 계산은 계산 기하를 사용하였다. 이 논문의 방법은 다양한 사람 동작을 인식하기 위하여 사용되었다. 비디오에 나타나는 사람 동작 추적은 매우 우수하다.

하수처리장 유입수 성상 실시간 예측모델 및 활용성 평가 (Evaluation on Applicability of the Real-time Prediction Model for Influent Characteristics in Full-scale Sewerage Treatment Plant)

  • 김연권;김지연;한인선;김주환;채수권
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1706-1709
    • /
    • 2010
  • 일반적으로 생물학적 하수처리공정들은 단위공정내 물리 화학적 및 생물학적 반응들이 복잡하게 존재한다. 활성슬러지모델 1(ASM No.1)을 시작으로 생물공정을 모사하기 위한 다양하고도 새로운 수학적 모델들이 개발되어 왔다. 그러나 이들 모델은 그 활용의 측면에 있어 비용과 단순성에서 매우 큰 단점을 가지고 있었다. 그중 이들 수학적 기반의 모델들이 갖는 또 다른 활용상의 어려움은 현장 근무자들이 활용하기에는 시간 소요와 컴퓨터-과학에 관한 기술부족의 장벽이 매우 높아 결국 모델활용의 영역은 전문가나 특정 엔지니어들에게 국한되어 왔다. 이러한 상황을 극복하고 현장 근무자들에게 도움을 주기 위해 동적-물질수지모델(Dynamic-Mass-Balance Model)에 기초한 $KM^2BM$이 개발되었다. 금번 논문은 생물학적 하수처리장을 설계하고 모사함에 있어 활용 가능한 모사 툴로서의 $KM^2BM$을 소개한다. 이 모델은 모델 파라메터의 추정이나 하수성상분석과 같은 별도의 노력 없이도 단순한 인자추정만으로 생물학적 하수처리장내 미생물의 중요 거동기작을 고려함으로서 잠재적 공정적응력을 최대화 시킬 수 있다.

  • PDF

프레임레벨유사도정규화를 적용한 문맥독립화자식별시스템의 구현 (Realization a Text Independent Speaker Identification System with Frame Level Likelihood Normalization)

  • 김민정;석수영;김광수;정현열
    • 융합신호처리학회논문지
    • /
    • 제3권1호
    • /
    • pp.8-14
    • /
    • 2002
  • 본 논문에서는 Gaussian mixture model을 이용한 실시간 문맥독립화자식별시스템을 구현하여 인식실험을 수행하였으며, 인식시스템의 성능을 향상시키기 위하여 화자검증시스템에서 좋은 결과를 보인 유사도 정규화(Likelihood normalization)방법을 적용하여 인식실험을 하였다. 시스템은 크게 전처리단과 화자모델생성단, 화자식별단으로 나누어진다. 전처리단에서는 화자의 발성변화를 고려하여 CMN(Cepstral mean normalization)과 Silence removal 방법을 적용하였다. 화자모델생성단에서는, 화자발성의 음향학적 특징을 잘 표현할 수 있는 GMM(Gaussian mixture model)을 이용하여 화자모델을 작성하였으며, GMM의 파라미터를 최적화하기 위하여 MLE(Maximum likelihood estimation)방법을 사용하였다. 화자식별단에서는 학습된 데이터와 테스트용 데이터로부터 ML(Maximum likelihood)을 이용하여 유사도를 계산하였으며, 이 과정에서 유사도 정규화를 적용한 경우에는 프레임단위로 유사도를 계산하게 된다. 계산된 유사도는 스코어(S$_{C}$)로 표현하였고, 가장 높은 스코어를 가지는 화자가 인식화자로 결정된다. 화자인식에서 발성의 종류로는 문맥독립 문장을 사용하였다. 인식실험을 위해서는 ETRI445 DB와 KLE452 DB를 사용하였으며, 특징파라미터로서는 켑스트럼계수 및 회귀계수값만을 사용하였다. 인식실험에서는 등록화자의 수를 달리하여 일반적인 화자식별방법과 프레임단위유사도정규화방법으로 각각 인식실험을 하였다. 인식실험결과, 프레임단위유사도정규화방법이 인식화자수가 많아지는 경우에 일반적인 방법보다 향상된 인식률을 얻을 수 있었다.

  • PDF

유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용 (Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating)

  • 안현철
    • 경영정보학연구
    • /
    • 제16권3호
    • /
    • pp.161-177
    • /
    • 2014
  • 기업신용등급은 금융시장의 신뢰를 구축하고 거래를 활성화하는데 있어 매우 중요한 요소로서, 오래 전부터 학계에서는 보다 정확한 기업신용등급 예측을 가능케 하는 다양한 모형들을 연구해 왔다. 구체적으로 다중판별분석(Multiple Discriminant Analysis, MDA)이나 다항 로지스틱 회귀분석(multinomial logistic regression analysis, MLOGIT)과 같은 통계기법을 비롯해, 인공신경망(Artificial Neural Networks, ANN), 사례기반추론(Case-based Reasoning, CBR), 그리고 다분류 문제해결을 위해 확장된 다분류 Support Vector Machines(Multiclass SVM)에 이르기까지 다양한 기법들이 학자들에 의해 적용되었는데, 최근의 연구결과들에 따르면 이 중에서도 다분류 SVM이 가장 우수한 예측성과를 보이고 있는 것으로 보고되고 있다. 본 연구에서는 이러한 다분류 SVM의 성능을 한 단계 더 개선하기 위한 대안으로 유전자 알고리즘(GA, Genetic Algorithm)을 활용한 최적화 모형을 제안한다. 구체적으로 본 연구의 제안모형은 유전자 알고리즘을 활용해 다분류 SVM에 적용되어야 할 최적의 커널 함수 파라미터값들과 최적의 입력변수 집합(feature subset)을 탐색하도록 설계되었다. 실제 데이터셋을 활용해 제안모형을 적용해 본 결과, MDA나 MLOGIT, CBR, ANN과 같은 기존 인공지능/데이터마이닝 기법들은 물론 지금까지 가장 우수한 예측성과를 보이는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안모형이 더 우수한 예측성과를 보임을 확인할 수 있었다.