• Title/Summary/Keyword: Real-Time monitoring

Search Result 3,599, Processing Time 0.035 seconds

Tool Wear Monitoring System in CNC End Milling using Hybrid Approach to Cutting Force Regulation (하이브리드 방식의 절삭력 평준화를 통한 CNC 엔드 밀링에서의 공구 마모 모니터링 시스템)

  • Lee, Kang-Jae;Yang, Min-Yang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.20-29
    • /
    • 2004
  • A Tool wear monitoring system is indispensable for better machining productivity with guarantee of machining safety by informing the tool changing time in automated and unmanned CNC machining. Different from monitoring using other signals, the monitoring of spindle current has been used without requiring additional sensors on machine tools. For the reliable tool wear monitoring, current signal only of tool wear should be extracted from other parameters to avoid exhaustive analyses on signals in which all parameters are fused. In this paper, influences of force components of parameters on measured spindle current are investigated and a hybrid approach to cutting force regulation is employed for tool wear signal extraction in the spindle current. Finally, wear levels are verified with experimental results by means of real-time feedrate aspects changed to regulate the force component of tool wear.

  • PDF

Methodology for real-time adaptation of tunnels support using the observational method

  • Miranda, Tiago;Dias, Daniel;Pinheiro, Marisa;Eclaircy-Caudron, Stephanie
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.153-171
    • /
    • 2015
  • The observational method in tunnel engineering allows the evaluation in real time of the actual conditions of the ground and to take measures if its behavior deviates considerably from predictions. However, it lacks a consistent and structured methodology to use the monitoring data to adapt the support system in real time. The definition of limit criteria above which adaptation is required are not defined and complex inverse analysis procedures (Rechea et al. 2008, Levasseur et al. 2010, Zentar et al. 2001, Lecampion et al. 2002, Finno and Calvello 2005, Goh 1999, Cui and Pan 2012, Deng et al. 2010, Mathew and Lehane 2013, Sharifzadeh et al. 2012, 2013) may be needed to consistently analyze the problem. In this paper a methodology for the real time adaptation of the support systems during tunneling is presented. In a first step limit criteria for displacements and stresses are proposed. The methodology uses graphics that are constructed during the project stage based on parametric calculations to assist in the process and when these graphics are not available, since it is not possible to predict every possible scenario, inverse analysis calculations are carried out. The methodology is applied to the "Bois de Peu" tunnel which is composed by two tubes with over 500 m long. High uncertainty levels existed concerning the heterogeneity of the soil and consequently in the geomechanical design parameters. The methodology was applied in four sections and the results focus on two of them. It is shown that the methodology has potential to be applied in real cases contributing for a consistent approach of a real time adaptation of the support system and highlight the importance of the existence of good quality and specific monitoring data to improve the inverse analysis procedure.

An Apparatus for Monitoring Real-time Uranium Concentration Using Fluorescence Intensity at Time Zero

  • Lee, Sang-Mock;Shin, Jang-Soo;Kang, Shin-Won
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.166-174
    • /
    • 2001
  • An apparatus for detecting remote real-time uranium concentration using an optrode was developed. An optrode to detect uranium fluorescence as remote real-time control was designed. Fluorescence intensity at time 2ero was derived by the fluorescence signal processing and the algorithm to exclude the quenching effect of various quenchers and temperature fluctuations. This apparatus employing the above deriving method and the optrode has an error range within 6% in spite of serious fluorescence lifetime changes due to the quenching effect and temperature fluctuations. The detection limit is 0.06 ppm and the linearity is excellent between 0.06 ppm and 2 ppm on the aqueous uranium solution.

  • PDF

Development of Image-map Generation and Visualization System Based on UAV for Real-time Disaster Monitoring (실시간 재난 모니터링을 위한 무인항공기 기반 지도생성 및 가시화 시스템 구축)

  • Cheon, Jangwoo;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.407-418
    • /
    • 2018
  • The frequency and risk of disasters are increasing due to environmental and social factors. In order to respond effectively to disasters that occur unexpectedly, it is very important to quickly obtain up-to-date information about target area. It is possible to intuitively judge the situation about the area through the image-map generated at high speed, so that it can cope with disaster quickly and effectively. In this study, we propose an image-map generation and visualization system from UAV images for real-time disaster monitoring. The proposed system consists of aerial segment and ground segment. In the aerial segment, the UAV system acquires the sensory data from digital camera and GPS/IMU sensor. Communication module transmits it to the ground server in real time. In the ground segment, the transmitted sensor data are processed to generate image-maps and the image-maps are visualized on the geo-portal. We conducted experiment to check the accuracy of the image-map using the system. Check points were obtained through ground survey in the data acquisition area. When calculating the difference between adjacent image maps, the relative accuracy was 1.58 m. We confirmed the absolute accuracy of the image map for the position measured from the individual image map. It is confirmed that the map is matched to the existing map with an absolute accuracy of 0.75 m. We confirmed the processing time of each step until the visualization of the image-map. When the image-map was generated with GSD 10 cm, it took 1.67 seconds to visualize. It is expected that the proposed system can be applied to real - time monitoring for disaster response.

A Study on Real-Time Sports Activity Classification & Monitoring Using a Tri-axial Accelerometer (가속도 센서를 이용한 실시간 스포츠 동작 분류.모니터링에 관한 연구)

  • Kang, Dong-Won;Choi, Jin-Seung;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.2
    • /
    • pp.59-64
    • /
    • 2008
  • D. W. KANG, J. S. CHOI, and G. R. TACK, A Study on Real-Time Sports Activity Classification & Monitoring Using a Tri-axial Accelerometer. Korean Jouranl of Sport Biomechanics, Vol. 18, No. 2, pp. 59-64, 2008. This study was conducted to study the real-time sports activity classification and monitoring using single waist mounted tri-axial accelerometer. This monitoring system detects events of sports activities such as walking, running, cycling, transitions between movements, resting and emergency event of falls. Accelerometer module was developed small and easily attachable on waist using wireless communication system which does not constrain sports activities. The sensor signal was transferred to PC and each movement pattern was classified using the developed algorithm in real-time environment. To evaluate proposed algorithm, experiment was performed with several sports activities such as walking, running, cycling movement for 100sec each and falls, transition movements(sit to stand, lie to stand, stand to sit, lie to sit, stand to lie and sit to lie) for 20 times each with 5 healthy subjects. The results showed that successful detection rate of the system for all activities was 95.4%. In this study, through sports activity monitoring. it was possible to classify accurate sports activities and to notify emergency event such as falls. For further study, the accurate energy consumption algorithm for each sports activity is under development.

A System Design for Real-Time Monitoring of Patient Waiting Time based on Open-Source Platform (오픈소스 플랫폼 기반의 실시간 환자 대기시간 모니터링 시스템 설계)

  • Ryu, Wooseok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.575-580
    • /
    • 2018
  • This paper discusses system for real-time monitoring of patient waiting time in hospitals based on open-source platform. It is necessary to make use of open-source projects to develop a high-performance stream processing system, which analyzes and processes stream data in real time, with less cost. The Hadoop ecosystem is a well-known big data processing platform consisting of numerous open-source subprojects. This paper first defines several requirements for the monitoring system, and selects a few projects from the Hadoop ecosystem that are suited to meet the requirements. Then, the paper proposes system architecture and a detailed module design using Apache Spark, Apache Kafka, and so on. The proposed system can reduce development costs by using open-source projects and by acquiring data from legacy hospital information system. High-performance and fault-tolerance of the system can also be achieved through distributed processing.