As the Internet real-time multimedia applications increases, the bandwidth available to TCP connections is oppressed by the UDP traffic, result in the performance of overall system is extremely deteriorated. Therefore, developing a new transmission protocol is necessary. The TCP-friendly algorithm is an example satisfying this necessity. The TCP-Friendly Rate Control (TFRC) is an UDP-based protocol that controls the transmission rate that is based on the available round trip time (RTT) and the packet loss rate (PLR). In the data transmission processing, transmission rate is determined based on the conditions of the previous transmission period. If the one-step ahead predicted values of the control factors are available, the performance will be improved significantly. This paper proposes a prediction model of transmission rate control factors that will be used in the transmission rate control, which improves the performance of the networks. The model developed through this research is predicting one-step ahead variables of RTT and PLR. A multiplayer perceptron neural network is used as the prediction model and Levenberg-Marquardt algorithm is used for the training. The values of RTT and PLR were collected using TFRC protocol in the real system. The obtained prediction model is validated using new data set and the results show that the obtained model predicts the factors accurately.
The engine exhaustive valve became essential as the important element. The dissimmilar welding method of exhaustive valve head to stem was asked for manufacturing the engine exhaustive valve, for which the electric resistance are welding has been conventionally used, resulting in poor quality of the welded joint. In this paper, not only the development of optimizing of friction welding with more reliability and more applicability but also the development of in-process real-time weld qudlity(such as strength and toughness) evaluation technique by acoustic emission for friction welding of the engine exhaustive valve(SUH3-SUH35 dissimilar steels) were perfomed. The high temperature(500, 500, 600$^{circ}$C) creep properties prediction of the friction welded joint of SUH3-SUH35 was investigated relating to the initial strain meethod(ISM) as a new approach, resulting in obtaining an experimental equation of creep life prediction.
본 논문에서는 바다 환경의 변화로 인한 양식장의 피해를 막을 수 있도록 양식장의 환경 데이터를 실시간 모니터링하고 기계 학습 기반의 예측 서비스를 제공하는 시스템 설계를 다룬다. 제안 시스템은 양식장의 주요 위치에 수소 농도, 염도, 용존 산소량 그리고 수온을 측정할 수 있는 센서들로 구성되는 사물인터넷 기반의 디바이스 모듈을 설치하며, 이들로 부터 수집한 데이터는 LTE 또는 LoRa 통신 기술을 이용해 클라우드 DB로 전송한 후 웹사이트나 모바일 애플리케이션을 통해 실시간으로 양식장의 환경 데이터 모니터링을 가능하게 한다. 아울러 수집된 데이터를 활용한 기계학습 기반의 예측 기술을 적용해 양식장의 환경 변화에 미리 대비할 수 있도록 하는 기능을 가진다.
Automatic docking of small planing ship is a critical aspect of maritime operations, requiring accurate prediction of motion states to ensure safe and efficient maneuvers. This study investigates the use of Artificial Neural Network (ANN) to predict motion state of a small planing ship to enhance navigation automation in port environments. To achieve this, simulation tests were conducted to control a small planing ship while docking at various heading angles in calm water and in waves. Comprehensive analysis of the ANN-based predictive model was conducted by training and validation using data from various docking situations to improve its ability to accurately capture motion characteristics of a small planing ship. The trained ANN model was used to predict the motion state of the small planning ship based on any initial motion state. Results showed that the small planing ship could dock smoothly in both calm water and waves conditions, confirming the accuracy and reliability of the proposed method for prediction. Moreover, the ANN-based prediction model can adjust the dynamic model of the small planing ship to adapt in real-time and enhance the robustness of an automatic positioning system. This study contributes to the ongoing development of automated navigation systems and facilitates safer and more efficient maritime transport operations.
인공신경 회로망과 통계적 방법을 이용하여 오존 형성의 예측에 관한 연구를 수행하였다. 파라미터 평가방법으로는 실시간 파라미터를 평가하기 위하여 ELS 및 RML 방법이 사용되었으며 오존 형성의 모델로는 ARMAX 모델을 사용하였다. 또한 3층 구조를 갖는 인공신경 회로망 방법을 이용하여 오존 형성의 예측 시험을 수행하였으며 본 연구에 사용된 통계적 방법의 성능을 평가하기 위하여 오존 형성의 예측결과를 실제 자료와 비교 분석을 하였다. 실제 자료와의 비교를 통하여 파라미터 평가 방법 및 인공신경 회로망 방법에 근거한 예측방법이 제한된 예측 구간 내에서 만족할 만한 성능을 보임을 확인할 수 있었다.
실시간 영상처리를 위해 다양한 시스템이 개발되고 있으며, 이들은 주로 고성능 프로세서에 의존한다. 하지만 이러한 영상처리 시스템은 상대적으로 낮은 성능의 모바일 시스템이나 저전력을 요구하는 시스템에는 적용하기 힘들다. 따라서 다양한 어플리케이션에 적용을 하기 위해서는 영상처리를 위한 좀 더 효율적인 방법이 필요하다. 본 논문에서는 상대적으로 낮은 성능의 시스템에서도 실시간 영상처리가 가능하도록 인트라 예측기 원리를 이용하여 영상의 처리 범위를 제한하는 전처리 방법을 고안하였고, 이러한 전처리기를 하드웨어 코어로 하는 시스템 구성을 제안한다. 또한 하드웨어 코어 구현 결과와 이를 이용한 영상 처리량 감소 방안을 제시한다.
투자에 의해 기대되는 경제적 효과는 실질할인율의 자승으로 매년 나누어서 현재가치로 전환된다. 따라서 실질할인율이 경제성 분석결과에 미치는 영향은 다른 요인들보다 크다. 실질할인율을 예측하는 기존의 일반적인 방법은 과거 특정기간의 평균값을 적용하는 것이다. 본 연구에서는 실질할인율의 예측 정확도를 향상시키기 위한 방법을 제안하였다. 먼저 실질할인율을 구성하는 기업대출 이자율과 소비자 물가지수에 영향을 미치는 경제변수들을 도출하였다. 기업대출 이자율에 영향을 주는 변수들로는 콜 금리와 환율, 소비자 물가지수에 영향을 주는 경제변수는 생산자 물가지수를 선정하였다. 다음으로 실질할인율과 선정된 변수들과의 영향관계를 검정하였다. 영향관계가 존재하는 것으로 분석되었다. 마지막으로 관련된 경제 변수들을 기반으로 2008년부터 2010년까지의 실질할인율을 예측하였다. 예측 결과의 정확도는 실측값과 평균값의 결과와 비교되었다. 실측값이 적용된 실질할인율은 -1.58%였으며, 예측 값은 -0.22%, 평균값은 6.06%으로 분석되었다. 본 연구에서 제안한 방법은 금융위기와 같은 특수 상황을 고려하지 않은 것이지만, 평균값보다 예측 정확도가 크게 우수한 것으로 분석되었다.
기초자료의 획득 체계 및 가공 체계의 부재와 복잡한 사용자 입력 체계로 인해서 유출유 확산 예측 모델의 활용에 제약이 따른다. 이러한 상황에서 유류오염사고에 신속하게 대응하기 위한 과학적 방제 전략 수립은 어렵다. 본 연구에서는 현재 실정을 고려하여 유출유 확산 예측 모델 구동을 위한 최선의 상시 활용 체계를 수립하였다. 모든 기초자료를 직접 구축하고 관리하는 것이 불가능하기 때문에 외부 기관의 실시간 동적 자료를 연계하고 최소한의 데이터베이스만을 직접 구축하여 실시간 유출유 확산 예측의 상시 활용이 가능함을 확인하였다. 또한 사용자와 모델간 인터페이스부분에서 발생하는 오류를 최소화하는 사용자 입력 인터페이스와 모델 연산 결과를 시공간 측면에서 다차원적으로 분석할 수 있는 결과 표출 인터페이스를 제안하였다. 본 연구 결과로 구축된 유출유 확산 예측 모델의 상시 운용 체계는 외부 자료에 의존하기 때문에 모델 결과의 불확실성이 존재하지만, 유류오염사고 발생시 신속하게 모델을 구동하여 유출유 확산 예측을 수행할 수 있다는 측면에서 실제 방제 현장에서 의미있게 활용될 수 있다.
In this work, we develop on-line traffic prediction algorithm for real-time VBR traffic. There are a number of important issues: (i) The traffic prediction algorithm should exploit the stochastic characteristics of the underlying traffic and (ii) it should quickly adapt to structural changes in underlying traffic. GOP ARIMA model effectively addresses this issues and it is used as basis in our bandwidth prediction. Our prediction model deploy Kalman filter to incorporate the prediction error for the next prediction round. We examine the performance of GOP ARIMA based prediction with linear prediction with LMS and double exponential smoothing. The proposed prediction algorithm exhibits superior performam againt the rest.
In order to estimate cell images, high-performance electron microscopes are used nowadays. In this paper, we propose a new simple, fast and efficient method for real-time automatic focusing in electron microscopes. The proposed algorithm is based on the prediction-error variance, and demonstrates its feasibility by using extensive experiments. This method is fast, easy to implement, accurate, and not demanding on computation time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.