• Title/Summary/Keyword: Real-Time GPS

Search Result 792, Processing Time 0.022 seconds

Evaluation of GPS Data Applicability to Traffic Information Collection after SA Removal (SA해제 이후 GPS데이터의 교통정보수집 적용가능성 평가)

  • Choi, Kee-Choo;Jana, Jeong-Ah;Shim, Sang-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.1 s.28
    • /
    • pp.11-20
    • /
    • 2004
  • The purpose of this paper is to evaluate the applicability of GPS data for real-time traffic information collection especially after SA removal. Two major results have been reported. One is the GPS data availability and/or useful data point density for travel time estimation using Circle-X algorithm. 87.23% of data points can be mobilized after SA whereas only 29.94% of data was useful in calculating travel time. The other is the possible reduction of the buffer size that is used for screening the points of all GPS into useful and useless data, respectively. With these outcomes, it is safely expected that the regular GPS alone can provide the data points for real-time travel time estimation instead of the more expensive DGPS system.

  • PDF

Feasibility Study of Structural Behavior Monitoring Using GPS and Accelerometer (GPS와 가속도계를 이용한 구조물 거동모니터링의 타당성 연구)

  • Han, Jung Hun;Ryu, Sung Chan;Cho, Doo Yong;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.11-22
    • /
    • 2012
  • In this study, problems of RTK (Real Time Kinematic)-GPS (Global Positioning System) and an accelerometer sensor when applied to structures were experimentally identified through a comparison between results of the displacement measurement using the RTK-GPS, the accelerometer, and LVDT (Linear variable differential transformer). Integrated displacement was calculated by the improved RTK-GPS and accelerometer on the frequency of observation and positioning accuracy. This integrated displacement was also compared with that of LVDT to check the validity of application and feasibility.

Study on the Real-Time Precise Orbit Biases Correction Technique for the GPS/VRS Network

  • Li, Cheng-Gang;Huang, Ding-Fa;Zhou, Dong-Wei;Zhou, Le-Tao;Xiong, Yong-Liang;Xu, Rui
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.251-254
    • /
    • 2006
  • A precise real-time method of using the IGS ultra rapid products (IGU) and the GPS broadcast ephemeris to calculate the VRS orbit corrections was presented here which was suited for GPS/VRS reference station network based positioning. Test data acquired from both the SGRSN (Sichuan GPS Reference Station Network) and SCIGN (Southern California integrated GPS network) were used to evaluate the performance of the modeling techniques. The new method was proven to be more precise and reliable compared with the existing conventional network-based orbit error interpolation method. It was shown that 0.004ppm relative accuracy was reached, namely the influence from the orbit bias for the RTK positioning within 100km area can be of sub-millimeter level.

  • PDF

Experimental Comparison of Software for Real-time GPS Precision Positioning (실시간 GPS 정밀측위를 위한 소프트웨어의 실험적 비교)

  • Lee, Ki-Do;Choi, Yun-Soo;Lee, Im-Pyeong;Sa, Seok-Jae
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.299-304
    • /
    • 2005
  • GPS 기술의 빠른 발전에 힘입어 정밀 측위 분야에도 GPS의 활용은 증가하고 있다. GPS로부터 정밀한 좌표를 획득하기 위해서 GPS 신호에서 모호 정수 값을 정확하게 결정하는 것이 중요하다. 이를 위해 기존에는 다중시점(multi-epoch) 데이터를 사용한 방법이 일반적이었으나 최근에 단일시점(single-epoch) 데이터를 이용한 방법이 개발되었다. 이에 본 연구는 각각의 방법이 구현된 세 가지 소프트웨어를 활용하여 GPS 기선해석과 관련된 다양한 실험을 수행하여 결과를 분석하였다. 이를 통해 실시간 정밀 측위에 대한 이용 가능성을 검증하였다.

  • PDF

Detection of GPS Clock Jump using Teager Energy (Teager 에너지를 이용한 GPS 위성 시계 도약 검출)

  • Heo, Youn-Jeong;Cho, Jeong-Ho;Heo, Moon-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.58-63
    • /
    • 2010
  • In this paper, we propose a simple technique for the detection of a frequency jump in the GPS clock behavior. GPS satellite atomic clocks have characteristics of a second order polynomial in the long term and a non-periodic frequency drift in the short term, showing a sudden frequency jump occasionally. As satellite clock anomalies influence on GPS measurements, it requires to develop a real time technique for the detection of the clock anomaly on the real-time GPS precise point positioning. The proposed technique is based on Teager energy which is mainly used in the field of various signal processing for the detection of a specific signal or symptom. Therefore, we employed the Teager energy for the detection of the jump phenomenon of GPS satellite atomic clocks, and it showed that the proposed clock anomaly detection strategy outperforms a conventional detection methodology.

Development and Performance Verification of Real-time Hybrid Navigation System for Autonomous Underwater Vehicles

  • Kim, Hyun Ki;Jung, Woo Chae;Kim, Jeong Won;Nam, Chang Woo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.2
    • /
    • pp.97-107
    • /
    • 2016
  • Military Autonomous Underwater Vehicle (AUV) is utilized to search a mine under the sea. This paper presents design and performance verification of real-time hybrid navigation system for AUV. The navigation system uses Doppler Velocity Log (DVL) integration method to correct INS error in underwater. When the AUV is floated on the water, the accumulated error of navigation algorithm is corrected using position/velocity of GPS. The navigation algorithm is verified using 6 Degree Of Freedom (DOF) simulation, Program In the Loop Simulation (PILS). Finally, the experiments are performed in real sea environment to prove the reliability of real-time hybrid navigation algorithm.

Development of real-time car tracking system with RGPS and its error analysis (RGPS를 이용한 실시간 차량관제시스템 구현과 오차분석)

  • Go, Sun-Jun;Lee, Ja-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.15-24
    • /
    • 2000
  • Stand-alone global position system receiver based on C/A code tracking generates position error of 100m mainly due to the selective availability and ionospheric and tropospheric delay errors. The differential GPS is the most commonly used method for removing those bias range error components. The relative GPS, although somewhat restrictive in its use, is ideally suited to the car monitoring system for improved Automatic Vehicle location, especially where the DGPS infrastructure is not available. The RGPS does not require any additional hardware, facility or external infrastructure and can be operated within the system with existing host computer and communication link. This paper presents detailed description of the RGPS concept and its implementation for real-time data processing. Performance of RGPS is evaluated with real data and is compared with DGPS.

  • PDF

Design and Evaluation of PMU Performance Measurement and GPS Monitoring System for Power Grid Stabilization

  • Yang, Sung-Hoon;Lee, Chang Bok;Lee, Young Kyu;Lee, Jong Koo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.67-72
    • /
    • 2015
  • Power grid techniques are distributed over general power systems ranging from power stations to power transmission, power distribution, and users. To monitor and control the elements and performance of a power system in real time in the extensive area of power generation, power transmission, wide-area monitoring (WAM) and control techniques are required (Sattinger et al. 2007). Also, to efficiently operate a power grid, integrated techniques of information and communication technology are required for the application of communication network and relevant equipment, computing, and system control software. WAM should make a precise power grid measurement of more than once per cycle by time synchronization using GPS. By collecting the measurement values of a power grid from substations located at faraway regions through remote communication, the current status of the entire power grid system can be examined. However, for GPS that is used in general national industries, unexpected dangerous situations have occurred due to its deterioration and jamming. Currently, the power grid is based on a synchronization system using GPS. Thus, interruption of the time synchronization system of the power system due to the failure or abnormal condition of GPS would have enormous effects on each field such as economy, security, and the lives of the public due to the destruction of the synchronization system of the national power grid. Developed countries have an emergency substitute system in preparation for this abnormal situation of GPS. Therefore, in Korea, a system that is used to prepare for the interruption of GPS reception should also be established on a long-term basis; but prior to this, it is required that an evaluation technique for the time synchronization performance of a GPS receiver using an atomic clock within the power grid. In this study, a monitoring system of time synchronization based on GPS at a power grid was implemented, and the results were presented.

The Study on the Tide Correction of Bathymetry based on the DGPS Surveying (DGPS에 의한 해양측량 조위보정에 관한연구)

  • 조규전;차득기;강봉서
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.3
    • /
    • pp.295-303
    • /
    • 2000
  • The purpose of this research is to enhance efficiency and tide measurement of the bathymetry survey based on the DGPS techniques which is becoming popular today due to a lot of benefits using the GPS. And according to the result of this research, choice and interpolation were possible with the most optimum method according to the various mathematical regressive equations as linear, parabolic, polynomic, reciprocal, hyperbolic, logarithmic and Gaussian functions. And the height of ground surface is easily calculated by 2D+1D transformation of coordinate of WGS84 in Cm-level based on the real time, even though the GPS time and tide were used to be synchronized through step-wised processing before. And because of the synchronization of time, the real time DGPS can cope with the loss of local current and changes of the tide.

  • PDF

DATUM PROBLEM OF NETWORK-BASED RTK-GPS POSITIONING IN TAIWAN

  • Yeh, Ta-Kang;Hu, Yu-Sheng;Chang, Ming-Han;Lee, Zu-Yu;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.90-94
    • /
    • 2007
  • The conventional single-reference station positioning is affected by systematic errors such as ionospheric and tropospheric delay, so that the rover must be located within 10 km from the reference station in order to acquire centimeter-level accuracy. The medium-range real-time kinematic has been proven feasible and can be used for high precision applications. However, the longer of the baseline, the more of the time for resolving the integral ambiguity is required. This is due to the fact that systematic errors can not be eliminated effectively by double-differencing. Recently, network approaches have been proposed to overcome the limitation of the single-reference station positioning. The real-time systematic error modeling can be achieved with the use of GPS network. For expanding the effective range and decreasing the density of the reference stations, Land Survey Bureau, Ministry of the Interior in Taiwan set up a national GPS network. In order to obtain the high precision positioning and provide the multi-goals services, a GPS network including 66 stations already been constructed in Taiwan. The users can download the corrections from the data center via the wireless internet and obtain the centimeter-level accuracy positioning. The service is very useful for surveyors and the high precision coordinates can be obtained real time.

  • PDF