• Title/Summary/Keyword: Real-Time Digital Simulator

Search Result 165, Processing Time 0.027 seconds

HTS SMES Application Simulation for Power Quality Simulation (전력품질 개선을 위한 HTS SMES 적용 시뮬레이션)

  • Kim, A-Rong;Kim, Gyeong-Hun;Kim, Jin-Geun;Park, Min-Won;Yu, In-Keun;Lee, Sang-Jin;Park, Jung-Do;Yi, Dong-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2190-2194
    • /
    • 2010
  • Wind power generation system (WPGS) of Ulleung Island causes frequency and voltage fluctuation due to wind speed variation during night time. Superconducting magnetic energy storage (SMES) system can overcome the fluctuations through the fast response time of energy charging and discharging. The SMES system should be connected to the terminal of the WPGS for frequency stabilization. To demonstrated the effectiveness of SMES system for power quality improvement, Ulleung Island power network was modeled in a real time digital simulator (RTDS). The RTDS-based simulation results of power quality improvement with SMES are investigated and discussed in detail.

Development of a Real-time Simulation Method for the Utility Application of Superconducting power Devices (PART 1 : HIS Power Cable) (초전도 전력기기의 계통적용을 위한 실시간 시뮬레이션 기법 개발 (PART 1 : 고온초전도 전력 케이블))

  • Kim, Jae-Ho;Park, Min-Won;Park, Dae-Jin;Kang, Jin-Ju;Cho, Jeon-Wook;Sim, Ki-Deok;Yu, In-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1055-1060
    • /
    • 2006
  • High temperature superconducting(HTS) power cable is expected to be used for power transmission lines supplying electric power for densely populated cities in the near future. Since HTS power cable is capable of the high current density delivery with low power loss, the cable size can be compact comparing with the conventional cable whose capacity is same. In this paper, the authors propose the real time simulation method which puts a teal HTS wire into the simulated 22.9 kV utility grid system using Real Time Digital Simulator (RTDS). For the simulation analysis, test sample of HTS wire was actually manufactured. And the transient phenomenon of the HTS wire was analyzed in the simulated utility power grid. This simulation method is the world first trial in order to obtain much better data for installation of HTS power device into utility network.

Method to Prevent the Malfunction Caused by the Transformer Magnetizing Inrush Current using IEC 61850-based IEDs and Dynamic Performance Test using RTDS Test-bed

  • Kang, Hae-Gweon;Song, Un-Sig;Kim, Jin-Ho;Kim, Se-Chang;Park, Jong-Soo;Park, Jong-Eun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1104-1111
    • /
    • 2014
  • The digital substations are being built based on the IEC 61850 network. The cooperation and protection of power system are becoming more intelligent and reliable in the environment of digital substation. This paper proposes a novel method to prevent the malfunction caused by the Transformer Magnetizing Inrush Current(TMIC) using the IEC 61850 based data sharing between the IEDs. To protect a main transformer, the current differential protection(87T) and over-current protection(50/51) are used generally. The 87T IED applies to the second harmonic blocking method to prevent the malfunction caused by the TMIC. However, the 50/51 IED may malfunction caused by the TMIC. To solve that problem, the proposed method uses a GOOSE inter-lock signal between two IEDs. The 87T IED transmits a blocking GOOSE signal to the 50/51 IED, when the TMIC is detected. The proposed method can make a cooperation of digital substation protection system more intelligent. To verify the performance of proposed method, this paper performs the real time test using the RTDS (Real Time Digital Simulator) test-bed. Using the RTDS, the power system transients are simulated, and the TMIC is generated. The performance of proposed method is verified in real-time using that actual current signals. The reaction of simulated power system responding to the operation of IEDs can be also confirmed.

Development of Brake System with ABS Function for Aircraft

  • Jeon, Jeong-Woo;Woo, Gui-Aee;Lee, Ki-Chang;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.423-427
    • /
    • 2003
  • In this paper, it is to development of brake system with ABS function for aircraft. The test of brake system is required before applying on aircraft. The real-time dynamic simulator with 5-D.O.F. aircraft dynamic model is developed for braking performance test of ABS (Anti-skid Brake System) control h/w with anti-skid brake functions. The dynamic simulator is real-time interface system that is composed of dynamic simulation parts, master control parts, digital and analog in/out interface parts, and user interface parts. The 5-D.O.F. aircraft dynamic model is composed of a big contour and a little contour by simulation s/w. The big contour represents the interactions of forces in airframe, nose and main landing gear, and engines on the center of gravity. The little contour represents interactions of wheel, braking units, hydraulic units and a control unit. ABS control h/w unit with ABS control algorithm is also developed and is tested with simulator under the some conditions of gripping coefficient. We have known that ABS control h/w unit on wet or snowy runway as well as dry runway very well protects wheel skid.

  • PDF

The development of training courses using real time digital simulator(RTDS) (전력계통 시뮬레이터를 이용한 교육 훈련 코스 개발)

  • Choi, Joon-Ho;Shin, Jeong-Hoon;Kim, Tae-Kyun;Kwak, Bang-Myeong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.316-318
    • /
    • 2005
  • This paper presents the development of the training courses using real time digital simulator (RTDS). This training courses for the engineers who are working at power system field are expected to be developed the sixteen courses. We describe the developed five courses in this paper which are protective relay testing, voltage compensation using a voltage compensator such as SVC and capacitor, the restoration of power for KEPCO system, phase unbalance simulation of transmission lines and harmonic analysis. We also describe the benchmark system composed of six buses with three machines for the KEPCO system to verify the power system analysis.

  • PDF

Dynamic Characteristics Test and Test Model Establish on Double Circuit for Protective Relay Test Using Real Time Digital Simulator (송전선보호계전기 시험을 위한 RTDS센서의 2회선 송전선로 Model구축 및 동특성시험)

  • Jung, Chang-Ho;Lee, Jae-Gyu;Yoon, Nam-Seon;Ahn, Bok-Shin;Kim, Sok-Il
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1038-1040
    • /
    • 1997
  • This paper describes dynamic characteristics test of distance relay and current differential relay using Real Time Digital Simulator on double circuit transmission line. First, The double circuit T/L modeling on RTDS was proposed and the results from the proposed model were compared with those of PSS/E. This comparison shows the possibility of dynamic test using the RTDS. The relay included about 20 test items which are apt to include maloperation of protective relays in critical situations.

  • PDF

Development of the Triple Modular Redundant Excitation System with Simulator for 500MW Synchronous Generator (500MW 동기발전기용 시뮬레이터 탑재형 디지털 삼중화 여자시스템 개발)

  • Ryu, Hoseon;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.70-75
    • /
    • 2014
  • TMR(triple modular redundant) digital excitation system with simulator is developed for tuning optimal control parameters during commissioning test and coping with system faults rapidly. A new system which mocks up virtual generator, turbine, grid can simulate as if excitation system is connected to a real generator system by setting four switches. The maintenance crew using the simulator is able to test perfectly the phase controller rectifiers, field breaker, sequence relays as well as TMR controller of the excitation system. Commissioning and performance results about the excitation system with simulator is discussed. The trial product was installed and operated at a 500MW thermal power plant after the commissioning test.

Advanced Real Time Simulation Platform for Control and Protection Studies of LSIS 80kV 60MW Jeju HVDC System

  • Iwa, Kartiwa;Lee, Kyung-Bin
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.85-86
    • /
    • 2013
  • This paper describes the physical configuration and features of the advanced control and protection devices, and operation control and monitoring system that are connected to a real time simulator for LS Industrial System 80kV 60 MW Jeju HVDC Pilot Project. Highlight of simulation result are provided to demonstrate the control and protection functionality.

  • PDF

Design of Force Control System for a Hydraulic Road Simulator using QFT (QFT 를 이용한 유압 로드 시뮬레이터에 관한 힘 제어계 설계)

  • Kim, Jin-Wan;Xuan, Dong-Ji;Nan, Yang-Hai;Kim, Young-Bae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1109-1114
    • /
    • 2007
  • This paper presents the road simulator control technology for reproducing the road input signal to implement the real road data. The simulator consists of the hydraulic pump, servo valve, hydraulic actuator and its control equipment. The QFT is utilized to control the simulator effectively. The control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) for a parametric uncertain model. A force controller is designed to communicate the control signal between simulator and digital controller. The efficacy of the QFT force controller is verified through the numerical simulation, in which combined dynamics and actuation of the hydraulic servo system are tested. The simulation results show that the proposed control technique works well under uncertain hydraulic plant system. The conventional software (Labview) is used to make up for the real controller in the real-time basis, and the experimental works show that the proposed algorithm works well for a single road simulator.

  • PDF

Design of Force Control System for a Hydraulic Road Simulator Using Quantitative Feedback Theory (정량적 피드백 이론을 이용한 유압 로드 시뮬레이터에 관한 힘 제어계 설계)

  • Kim, Jin-Wan;Xuan, Dong-Ji;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1069-1076
    • /
    • 2007
  • This paper presents the road simulator control technology for reproducing the road input signal to implement the real road data. The simulator consists of the hydraulic pump, servo valve, hydraulic actuator and its control equipment. The QFT(Quantitative Feedback Theory) is utilized to control the simulator effectively. The control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) for a parametric uncertain model. A force controller is designed to communicate the control signal between simulator and digital controller. Tracking specification is satisfied with upper and lower bound tolerances on the steep response of the system to the reference signal. The efficacy of the QFT force controller is verified through the numerical simulation, in which combined dynamics and actuation of the hydraulic servo system are tested. The simulation results show that the proposed control technique works well under uncertain hydraulic plant system. The conventional software (Labview) is used to make up for the real controller in the real-time basis, and the experimental works show that the proposed algorithm works well for a single road simulator.